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Abstract

The goal of this study is to explain and examine the statistical underpinnings of the Bollinger

Band methodology. We start off by elucidating the rolling regression time series model and

deriving its explicit relationship to Bollinger Bands. Next we illustrate the use of Bollinger

Bands in pairs trading and prove the existence of a specific return duration relationship in

Bollinger Band pairs trading[3]. Then by viewing the Bollinger Band moving average as an

approximation to the random walk plus noise (RWPN) time series model, we develop a pairs

trading variant that we call “Fixed Forecast Maximum Duration’ Bands” (FFMDPT). Lastly,

we conduct pairs trading simulations using SAP and Nikkei index data in order to compare the

performance of the variant with Bollinger Bands.
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1 Introduction

Developed by John Bollinger in the early 1980’s, the Bollinger Band methodology is a frequently

used tool in the analysis of financial markets. Traders frequently use the outputs of Bollinger Bands

in conjunction with other technical indicators in order to choose the position to take in the asset

being monitored. Although Bollinger Bands are a common tool for analyzing asset behavior, the

Bollinger Band components have generally been viewed as outputs of an algorithm rather than as

estimates of the parameters of a statistical model. More details about the history and development

of Bollinger Bands can be found in [1] and [2].

A basic explanation of the Bollinger Band construction follows. Given a time series yt at t = t∗,

define the n day rolling moving average of the series as mavet∗ :

mavet∗ =
t=t∗
∑

t=t∗−n+1

yt/n t∗ = n, . . . , T (1)

Note that, because the moving average uses n data points, the first time t∗ at which the mavet∗ can

be calculated is at t∗ = n. Similarly, the n day rolling variance at time t = t∗, σ2
t∗ , is defined as:

σ̂2
t∗

1 =

t=t∗
∑

t=t∗−n+1

(yt −mavet∗)
2/(n− 1) t∗ = n, . . . , T (2)

Then, given the relations above, the Bollinger Band components are constructed using a center line

and an upper and lower band defined respectively as:

CLt∗ = mavet∗

BBuppert∗ = mavet∗ + k ∗ σ̂t∗

and

BBlowert∗ = mavet∗ − k ∗ σ̂t∗

where k is referred to as the width multiplier and represents the distance in standard deviation

units from the center line to each band. An example of the Bollinger Band construction is shown in

Figure 6 in Appendix A on page 31.

1Note that this is the formula used to obtain an unbiased estimate of the unknown variance, σ2
t∗
. Another common

way of defining the variance, σ̂2
t∗ , is to use n in the denominator rather than (n − 1). The results that follow are

dependent on the denominator in equation (2) being defined as (n-1).
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The use of the moving average for the center line has generally been viewed by market technicians as

a low pass filter for the time series being monitored. By calculating the moving average of the actual

series and plotting the resulting series, the high frequency component is eliminated from the original

series and only the trend remains. The upper and lower band calculations use this trend as an input

and they are useful for developing indicator rules such as “when the price crosses BBUpper and

the RSI is above X, this indicates that the price is expected to . . . “. As far as the the origin of the

dispersion component is concerned, many different types of bands were experimented with before

John Bollinger came up with the idea of using the sample standard deviation, σ̂, as the measure of

the current dispersion of the time series. The details of his discovery are captured quite vividly in

[1] and are left for the reader to explore.

The goal of this study is to make connections between Bollinger Bands and time series models

and show how these connections can lead to useful statistical insights. The first connection shows

that although Bollinger Bands are generally viewed as a somewhat ad-hoc algorithm that generate

outputs used as trading indicators, they actually have strong statistical foundations. The second

connection provides an alternative way of viewing the Bollinger Band pairs trading algorithm and

leads to an interesting Bollinger Band variant.

2 Bollinger Band Literature

The literature with respect to Bollinger Bands simulations is quite vast. Butler and Kazakov [4]

apply swarm optimization techniques to search for optimal Bollinger Band Bollinger parameters.

The optimizations are done with respect to the profit and loss of Bollinger Band pairs trading

strategies.2 Similarly, Ni and Zhang [5] use genetic algorithms to find the optimal Bollinger Band

window length and band width jointly. The research regarding variations on Bollinger Bands is less

plentiful. Oleksiv [6] uses different algorithms for the construction of the bands including kriging, a

method more common in geostatistics. Chande [7] uses an exponentially weighted moving average as

a low pass filter for prices and adjusts the smoothing parameter dynamically based on the volatility

of prices. Finally, Tilley [8] combines the moving average with the concept of support and resistance

in order to switch between emerging markets funds and small cap funds to and from the SAP 500.

The rest of this article is organized as follows. In Section 3 we demonstrate an equivalence between

Bollinger Bands and the rolling regression time series model. In Section 4 we describe how Bollinger

Bands can be used in pairs trading as a mechanism for capturing the mean reversion behavior

2The application of Bollinger Bands to pairs trading will be discussed in detail in Section 4.
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expected in the asset pair being traded. In Section 5 , we make a connection between Bollinger Bands

and a state space model called the random walk plus noise model. This connection provides another

approximate statistical framework for Bollinger Bands and leads to a variant of Bollinger Bands

called Fixed Forecast Maximum Duration Bands. We then construct a pairs trading simulation

in order to compare the out of sample performance of the Bollinger Bands pairs trading strategy

(BBPT) and the Fixed Forecast Maximum Duration pairs trading strategy (FFMDPT). Finally, in

Section 6, we summarize our findings and provide suggestions for future research areas.

3 Bollinger Bands as a Rolling Regression Time Series Model

In order to develop a connection between Bollinger Bands and the rolling regression time series

model, we first need to describe the latter in precise detail.3

3.1 The Rolling Time Series Regression Model

The rolling regression time series model is commonly used when model coefficients are expected to

change over time. Following the notation of Zivot and Wang [10], the rolling regression time series

model using an n day moving window is shown below:

yt∗(n) = Xt∗(n)βt∗(n) + ǫt∗(n) t∗ = n, · · ·T (3)

Here yt∗(n) is an (n× 1) vector of independent observations on the response, Xt∗(n) is an (n× k)

matrix of explanatory variables and finally ǫt∗(n) is an (n × 1) vector of error terms each being

∼ N(0, σ2
t∗) . Note that (n) indicates that the the n observations in yt∗(n) and Xt∗(n) are the n

most recent values from time (t∗ − n+ 1) to t∗. Clearly we need to assume that n > k.

It is important to understand what is being assumed by the use of the (n) notation. First of all,

although the new observation at time t∗ is univariate, at time t∗, the vector yt∗(n) of observations

from t∗ − n + 1 to t∗ is used to estimate βt∗(n). Therefore, we need to differentiate between the

new univariate observation at t∗ and the n-dimensional vector of observations at t∗, yt∗(n). In what

follows, we always refer to the n × 1 vector at some t = t∗ as vecobst∗ and the new univariate

observation seen at t = t∗ as uniobst∗ .

The rolling regression estimation algorithm proceeds in the following manner: Initially, we start

out at t∗ = n because that is first point at which we can construct an estimate of β. We observe

3The originator of the rolling regression model is not known by the author but its popularity is most likely due to

Fama and MacBeth [9].
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vecobst∗=n which is the n-dimensional vector of the first n observations in the series. Note that

vecobst∗ has a regression model associated with it, namely, vecobst∗ = Xt∗βt∗ + ǫt∗ with the error

term ǫt∗ assumed to be independent (i.e. zeros off the diagonal of its covariance matrix). So, vecobst∗

is observed and the coefficients, βt∗ , in the model are then estimated. Next, time proceeds from

t = t∗ to t = t∗ + 1 = n+ 1 and a new observation vecobst∗+1 is observed. But this supposedly new

observation is constructed in the following manner: uniobst∗−(n−1) is removed from vecobst∗ and

the new uniobst∗+1 is observed and added to the front of the vecobst∗ observation. This modified

vecobst∗ vector is now vecobst∗+1 and is the “new” n-dimensional observation at t = t∗ + 1. Again,

vecobst∗+1 has a regression model associated with it namely, yt∗+1 = Xt∗+1βt∗+1+ǫt∗+1. The error

term ǫt∗+1 is again assumed to be independent. So, once vecobst∗+1 is observed, the coefficients in

the associated regression model are estimated thereby obtaining a new set of βt coefficients at time

t = t∗+1. This process repeats itself again at t∗ = n+2 and, n+3, · · · and so on and so forth until

t∗ = T .

Note that there is a serious statistical problem with the model represented in equation (3). Clearly

the response vecobst∗ is highly correlated with the response vecobst∗+1 because of how these observa-

tions are constructed. In fact, any two n-dimensional observations vecobst′ and vecobst′′ constructed

less than n periods apart will be correlated because they will contain common observations due to

the rolling window construction. Now, even though this correlation exists, the rolling regression

methodology still assumes that each regression model has independent error terms and therefore

independent vecobst∗ ∀t∗ = n. · · · , T . We should define the assumption more rigorously. Formally,

let us assume that the probability at time t of vecobst (i.e. Yt) possesses the following property:

Prob(Yt∗ = yt∗)|Bt∗) = Prob(Yt∗ = yt∗) (4)

where

Bt∗ = {Yt t = 1, · · · , t∗ − 1 }

This assumption implies that the likelihood of any vecobst∗ is independent of the previous vecobst

observations even though this is clearly not true. Why is this assumption required ? Often it is

believed that, due to structural changes or simply noise , the βt∗ parameter is expected to change

over time. Yet, at the same time, one also knows with certainty that estimates of βt∗ that are

close to each other in time are highly positively correlated. Therefore, the only way to generate

correlation in the estimates, allow them to change over time and yet keep the model analytically

tractable without resorting to more complex techniques is to make this independence assumption.

Rather than imposing a model for βt∗ and allowing the data to speak for the new estimate of

βt∗ , each time there is a new data point, the assumption is that, at each time t, a totally new n-
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dimensional data point is observed. In essence, from a time series modelling standpoint, the rolling

window construction together with the independence assumption is an ad-hoc way of dealing with

the fact that dynamics are not being specified for βt∗ . The expected correlation of the βt∗ estimates

is achieved through the use of the constant overlap in the adjacent n-dimensional observations.

Intuitively, a larger window will generate more highly correlated estimates than a shorter window.

The statistical flaw of the rolling regression time series model is that the independence assumption

clearly does not hold so the estimates are biased with respect to the true underlying DGP.

Conversely, the well known time varying regression-Kalman filter type model, also quite popular

in econometrics, is more complex than the rolling regression model mathematically but has the

advantage that only one model is assumed from the start and the dynamics for the beta coefficients

are specified directly. Consequently there is no need for the ad-hoc construction of a rolling window.

In the Kalman kilter framework, when a new uniobst∗ is observed at a new time t = t∗, the current

model estimate, βt∗−1, is updated and becomes the new estimate at t∗. This is probably why the

rolling regression time series model is often referred to as the “poor man’s time varying coefficient

regression model”. More details on the Kalman filtering approach can be found in [11] and [12] and

it will also be discussed in more detail in Section 5.4.

Below, Figure 1 displays the relationship between adjacent windows in the rolling time series regres-

sion model at t = t∗ (red line segment) and t = t∗ +1. (green line segment). Figure 2 displays what

is assumed to be happening with the same adjacent windows.

Figure 1: The rolling regression windows at t = t∗ and t = t∗ + 1 contain common observations.

t = t∗

yt∗−n+1
. . . . . . . . .. . . . . . . . . yt∗−n+10

. . . . . . . . .yt∗−n+(n−1) yt∗

t = t∗ + 1

yt∗−n+2
. . . . . . . . . . . .. . . . . . . . . . . .yt∗−n+11

. . . . . . . . . . . yt∗ yt∗+1
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Figure 2: Although Figure 1 on page 6 clearly shows the contrary, the assumption in the rolling

regression model is that adjacent windows at t = t∗ and t = t∗ + 1 do not contain common observa-

tions.

t = t∗

y′t∗−n+1

. . . . . . . . . . . . . . .
y′t∗−n+10

. . . . . . . . .
y′t∗−n+(n−1) y′t∗

t = t∗ + 1

y′′t∗−n+2

. . . . . . . . . . . . . . .
y′′t∗−n+11

. . . . . . . . .
y′′t∗ y′′t∗+1

3.2 The Equivalence of Bollinger Bands and the Rolling Regression Time

Series Model

Let us consider the intercept only version of the rolling regression time series model represented by

(3) so that Xt∗(n) is a vector of ones and βt∗(n) is a scalar. The rolling regression model in (3)

then becomes:

yt∗(n) = βt∗(n)Xt∗(n) + ǫt∗(n) t∗ = n, · · ·T (5)

Using classical least squares results, it is straightforward to show that the estimates of this model

at each time t∗ are:

β̂t∗ =
t=t∗
∑

t=t∗−n+1

yt/n t∗ = n, . . . , T (6)

and

σ̂2
t∗ =

t=t∗
∑

t=t∗−n+1

(yt − β̂2
t∗)/(n− 1) t∗ = n, . . . , T (7)

Note that if we equate β̂t∗ and mavet∗ , then the expressions for the estimates in equations (6) and

(7) are exactly the same as the Bollinger Band components in equations (1) and (2)4. Therefore,

the Bollinger Band algorithm results in estimates that are identical to those of an intercept only

rolling regression model where the intercept is the center line and the residual standard deviation is

the Bollinger Band standard deviation.

It is also straightforward to show that, for the model in (5), a 100(1−α)% confidence interval for the

future one step ahead response , also referred to in the statistics literature as a prediction interval

4In fact, the R [14] command: rollapply(inseries, width = ndays, FUN = function(y) summary(lm( y ∼ 1))$sigma,

align = “right”, fill = TRUE) and the R command: sqrt(rollapply(inseries, ndays, var, align = “right”, fill = TRUE))

will give identical results given the same series “inseries”.
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[13], is the following:

β̂t∗ ± t
α/2
n−1 × σ̂t∗

√

(1 + (1/n))

Note that it is possible to approximate this 100(1 − α)% prediction interval in the following way.

For window values of n between 10 and 50,
√

(1 + 1/n) ranges between 1.05 and 1.01. Therefore,

for values of n between 10 and 50, the approximate 100(1− α)% prediction interval becomes:

β̂t∗ ± t
α/2
n−1 × σ̂t∗ (8)

But notice that, if β̂t∗ is replaced by mavet∗ and t
α/2
n−1 is replaced by k , then (8) reduces to

BBuppert∗ = mavet∗ + k ∗ σ̂t∗

and

BBlowert∗ = mavet∗ − k ∗ σ̂t∗

Therefore, assuming that k is chosen appropriately, the upper and lower bands in Bollinger Bands

are approximately equivalent to the prediction intervals constructed from an intercept only rolling

regression model. We should point out that the approximation does depend on the order of mag-

nitude of σ and will get worse as σ increases. At the same time, it is always possible to avoid the

approximation by including the 1/n factor in the construction of BBupper and BBlower and obtain

the exact prediction interval associated with the intercept only rolling regression time series model.

In summary, the Bollinger Band methodology can be viewed as an intercept only rolling regression

time series model with the center line and the standard deviation being the mean and residual

standard deviation from the rolling regression model respectively. The BBUpper and BBLower

components of the Bollinger Bands will be approximately the same as the prediction intervals of the

intercept only rolling regression model as long as k is chosen appropriately.
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4 Bollinger Bands and Pairs Trading

Bollinger Band components are usually used with various other indicators in order to decide whether

an asset is declining or trending. The one quantitative strategy where the Bollinger Bands are often

used solely on their own is that of pairs trading. In pairs trading [15], where asset Z and asset X are

the asset pair being traded, the quantity yt = ln(Pz/Px)t is tracked over time as a time series. It is

assumed that yt is weakly stationary and therefore mean reverting.5 Therefore, when the quantity

yt gets too high or too low, the expectation is that it will eventually return to its unconditional mean

ut. Bollinger Bands are commonly used as a tool for exploiting this reversion behavior. Recall that

BBupper and BBlower can be constructed from the Bollinger Band algorithm using the series yt.

Therefore, Bollinger Bands exploits reversion in the following manner: If at any time t, yt touches

or crosses BBupper (BBlower) at say t∗, then this is viewed a signal that, after t∗, yt is expected

to decrease (increase) sometime in the relatively near future so a short (long) position is taken in

the pair at t∗ +1.6 Since mavet is the rolling mean estimate of the yt series, the crossing of yt back

through mavet∗∗ at some later time t∗∗ is used to indicate that the series yt has completely reverted

and the position is closed out.

For example, suppose that the series yt = (ln(Pz/Px)t is tracked over time and that it crosses

BBlowert at time t = t∗. Then, at time t∗ + 1, a long position is taken in asset Z and a short

position, equal in dollars to that amount taken in asset Z, is taken in asset X. This position is held

until yt eventually crosses through the rolling mean mavet∗∗ at some time t∗∗ in the future. The

overall position entered into at t∗ + 1 is then closed out by selling the long position in asset Z and

buying back the short position in asset X. Conversely, suppose that over the course of time yt crosses

through BBupper rather than BBLower. Then, since we expect yt to decrease in the near future,

we would go short asset Z and long asset X. Then, when the yt process crosses back through the

moving average, the overall position is closed out. For convenience going forward, we create an

acronym for the Bollinger Band pairs trading strategy by referring to it as the BBPT strategy.

5The weak stationarity assumption is equivalent to assuming that the mean, ut, of the process is constant. For

this to be the case, mean reversion has to exist.
6A long position is defined as being long the asset that is in the numerator of the ratio of log prices and short the

asset that is in the denominator. A short position is defined analogously.
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4.1 The SAP 500 and the Nikkei: A Pairs Trading Example

In order to illustrate the actual BBPT strategy using real data, we take the Standard and Poors

500 Index prices as asset Z and the Nikkei Index prices as asset X and construct yt, the difference

between their log prices over the year 2004.7 The Bollinger Bands generated by yt are based on

a rolling window size of n = 20 and a bandwidth multiplier of k = 2. The pair trades generated

during 2004 using these parameters are shown in Figure 7 in Appendix B. Each line segment in the

figure, whether it red or green, represents the entry and exit of one trade which is initially generated

by the touching or crossing of BBUpper or BBLower by yt.. We will discuss the first, fifth and

sixth trades in detail because these particular trades are representative of the typical behavior of

the BBPT strategy.

Consider the first green line segment which represents the first trade. BBUpper was crossed so

the action taken was to go short the paired asset by shorting the Standard and Poors Index and

going long the Nikkei index. The time of the entry of short position is indicated by the arrow, (i.e.

arrow always denotes the entry point) which is red to denote that the position was a short position.

Clearly yt reverts to the moving average very quickly and the position is then closed out. Since the

moving average was crossed from above, this indicates that there was a profit from this short trade

so the line segment is green. Finally, the diamond denotes the exit point. The diamond is red only

because it is always the same color as its associated arrow which was red because a short position

was taken.

The use of line segments, arrows and diamonds along with their respective colors allows for a large

amount of information to be conveyed in Figure 7. Also, because yt is defined as yt = (ln(Pz/Px)t,

the return from any long pair trade8 entered into at t∗ and exited at t∗∗ trade is equal to

(ln(Pz/Px)t∗∗ − (ln(Pz/Px)t∗ which is conveniently equal to the vertical distance between the arrow

and the diamond of the line segment. This relation is useful because one can then easily identify

where there was a large positive return or large negative return. Green line segments with large

vertical distances between their endpoints are signs of large positive returns. Red line segments with

large vertical distances between their endpoints represent large negative returns.

Next, we consider the fifth line segment which represents the fifth trade. Just as was the case with

the first trade, this is a short where the trade is short the SAP and long the Nikkei. But unlike

the first trade, the moving average is not crossed by yt until it is above the original entry point of

7It is important to realize that in an actual trading scenario one would want to test that yt was cointegrated over

some historical period immediately preceding the trading period 2004.
8The return to a short trade is -1.0* (ln(Pz/Px)t∗∗ − (ln(Pz/Px)t∗ .
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the trade. Therefore, the trade results in a loss and consequently the color of the line segment is

red rather than green. The sixth trade in the figure is a long trade because BBlower was crossed

but this trade also results in a loss because the yt series did not cross through the moving average

quickly enough. It crossed the moving average at a point lower vertically than where yt was at the

entry point. yt was expected to increase after entry and cross the moving average from below rather

than above but this did not happen. The vertical distance between the entry point and exit point

represents the negative return of the trade. Notice that, for this trade, the endpoints of the line

segment are green indicating that the trade was long the SAP and short the Nikkei.9

Since the horizontal axis of the plot in Figure 7 represents time, the duration of any trade is simply

the horizontal distance between when the trade opens (i.e. the arrow) and closes (i.e. the diamond).

One interesting aspect of the plot in Figure 7 that may not be obvious due to the scale of the axes is

that the durations of the winning trades (i.e. green line segments) are consistently shorter than the

durations of the losing trades (i.e. red line segments). In fact the average duration of the winning

trades in is 8.6 and the average duration of the losing trades is 20.5. This duration behavior is not

just specific to the use of the parameter values, n = 20 and k = 2. Consider Figure 8 in Appendix

C. Each of the eight plots represents the same pairs trading strategy simulated over different time

periods using various combinations of the values of the window size and the multiplier. The rolling

window size parameter n takes on the values of 20 and 30 while the width multiplier k while the

width multiplier is either 1 or 2. The plots in Figure 8 clearly indicate that, in a BBPT strategy,

the average duration of winning trades is a consistently shorter than the average duration of losing

trades. Later on a more fundamental result will be proven concerning the return-duration behavior

in the BBPT strategy. This result is a key component of the the Fixed Forecast Maximum Duration

Bands pairs trading (FFDBPT) strategy which is discussed in the following section.

9Note that the weighted sum of the the returns of all the trades in the figure is referred to as the return of the

strategy over 2004 where the weights are proportional to the dollars allocated to each trade. For our purposes, we

assume that all trades are given the same portfolio weight so that each trade weight = 1/number of trades.
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5 Fixed Forecast Maximum Duration Bands

The use of Bollinger Bands in pairs trading goes back to the middle of the 1980’s. The algorithm’s

popularity alone suggests that it has been at least reasonably successful in capturing mean reversion

in paired assets with cointegrated price behavior.10 In this section, we create a series of successive

links between various well known time series models which eventually lead back to Bollinger Bands.

This successive linking will lead to the development of a variant of Bollinger Bands called Fixed

Forecast Maximum Duration Bands. But, in order to develop this variant, it is necessary to introduce

the various time series models and show how they are related. First we introduce the concept of

exponential smoothing and its various properties. Next, we describe the Kalman filtering approach

in some detail. Finally, we introduce a particularly simple Kalman filter called the random walk

plus noise and make a connection between it and Bollinger Bands.

5.1 Introduction to Simple Exponential Smoothing

A well known forecasting method originally developed by Brown in the 1950’s [16, 17] is that of

simple exponential smoothing (SES). The method is appropriate when it believed that the mean of

the series might be changing over time but there is no trend or seasonality evident in the series.

The method of SES smoothing takes the forecast for the previous period and adjusts it using the

empirical forecast error. That is, the forecast for the next period is

ŷt∗+1 = ŷt∗ + λ(y∗t − ŷt∗) (9)

The value of parameter λ is restricted to be between 0 and 1 and is either determined empirically or

known apriori based on the forecaster’s previous experience. Of course, monitoring of the parameter

λ is critical because the behavior of the series can change over time. We can re-write the forecast in

the following manner in order to gain insight into what exponential smoothing is really doing:

ŷt∗+1 = λy∗t + (1 − λ)ŷt∗ (10)

By examining (10), we can see that exponential smoothing is a model in which the forecast ŷt∗+1

is based on weighting the most recent observation yt∗ with a weight equal to λ and the previous

forecast with a weight equal to (1−λ). Following Hyndman et al [18], the implications of exponential

smoothing can be seen more easily if ŷt∗+1 is expanded by replacing ŷt with its components as follows:

ŷt∗+1 = λyt∗ + (1 − λ)[λyt∗−1 + (1− λ)ŷt∗−1]

= λyt∗ + λ(1 − λ)yt∗−1 + (1− λ2)ŷt∗−1

10Identifying a mean reverting pair of tradeable assets is a separate issue and will not be discussed here.
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If this substitution is repeated by replacing ŷt∗−1 with its components, ŷt∗−2 with its components,

and so on, the relation becomes:

ŷt∗+1 = λyt∗ + λ(1 − λ)yt∗−1 + λ(1− λ)2yt∗−2 + λ(1 − λ)3yt∗−3

+ λ(1− λ)4yt∗−4 + · · ·+ λ(1− λ)t
∗
−1y1 + (1 − λ)t

∗

ŷ1 (11)

Therefore, ŷt∗+1 represents a weighted moving average of all past observations with the weights

decreasing exponentially giving rise to the term “exponential” smoothing. Note that there is an

initialization issue in that we need an initial value for ŷ1. Usually, this value is taken to be the first

observation or some proportion of it and, if the series is long enough, the choice of this value should

have a negligible effect on the predictions. For more elaborate methods for choosing the initial value,

one should refer to [18].

5.2 Simple Exponential Smoothing and the ARIMA(0,1,1)

The following discussion assumes that the reader has some familiarity with the ARIMA time-series

modelling approach of Box and Jenkins. If this is not the case, then one is referred to [19] for

a detailed description. First of all, it is well known that a forecasting equivalence exists between

particular exponential smoothing models and the mapped ARIMA model [18, 22]. In fact, Muth

[20] was the first of many authors to prove that SES is optimal for the ARIMA(0,1,1) process:

(1−B)yt = (1− θB)ǫt

which can be re-written as

yt = yt−1 − θǫt−1 + ǫt (12)

Note that since the sign of θ is arbitrary, (12) can be re-written as

yt = yt−1 + θǫt−1 + ǫt (13)

Also, in order for the ARIMA(0,1,1) model to be invertible, it is necessary to restrict θ so that

θ ∈ (−1, 1). By SES being optimal, what is meant is that, if the parameter θ in ARIMA(0,1,1)

process is known, then the SES method with parameter λ = (1 − θ) will give the same forecasts

as the ARIMA(0,1,1) model. Unfortunately Muth’s proof [20] is not particularly transparent so we

provide a simpler proof here. First, we write the one-step forecast for the ARIMA(0,1,1) model

below:

yt∗+1 = yt + θǫt∗ + ǫt∗+1 (14)
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Now, assuming that θ is known, if one wanted to calculate the one step ahead forecast using the

ARIMA(0,1,1), the expectation of ǫt+1 is zero so the forecasting equation becomes

ŷt∗+1 = yt∗ + θǫt∗

Therefore, generating the forecast, ŷt∗+1 requires estimating ǫt∗ using ǫ̂t∗ . The estimate of ǫ̂t∗ =

(ŷt∗ − yt∗) so the forecast becomes

ŷt∗+1 = yt∗ + θ(ŷt∗ − yt∗)

= (1 − θ)yt∗ + θŷt∗

But this is equation (10) for simple exponential smoothing with parameter λ = (1 − θ). Therefore,

we have shown that the forecast of the ARIMA(0,1,1) model with parameter θ is identical to the

forecast for SES with parameter (1− θ).

5.3 The Weighted Age In Simple Exponential Smoothing

It should be emphasized that SES is not a time series model per se but rather a forecasting method

because there is no data generating process (DGP) underlying SES. Also, because of the invertibility

condition in the ARIMA(0,1,1), θ is restricted to lie between -1 and + 1 which implies that λ in SES

is restricted to be between 0 and 2. In practical applications of SES, the λ parameter is generally

chosen to be between 0 and 1 in order to ensure that the weight given to past observations decreases

as the observations go further back in time. In fact, given λ, we can easily calculate the weighted

average age of the observations used in the current forecast of SES. Notice that, in (11), the weight

given to an observation k periods ago, yt−k, is λ(1−λ)k. Therefore, the weighted average age of the

observations going into the current SES forecast at any time t is:

k̄ = 0λ+ 1λ(1− λ) + 2λ(1− λ)2 + · · ·

= λ

∞
∑

k=0

k(1− λ)k

=
(1− λ)

λ

A similar “older data gets less weight’ concept exists for the moving average forecast used in Bollinger

Bands except that the decrease is more abrupt. In the case of the moving average, the past observa-

tions that are of age n-1 periods or less are weighted equally with weight = 1/n. Any observations

older than n-1 periods get a weight of zero. Therefore, for the moving average, we have:

k̄ =
0 + 1 + 2 + · · ·+ n− 1

n

=
n− 1

2
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An interesting question is whether there exists a parameter λ in SES that will gives forecasts similar

to that of the n period moving average in Bollinger Bands. Brown [17] reasoned that, if the average

age of the observations used in the SES forecast and the moving average forecast are the same,

then one would expect those models to give somewhat similar forecasts. Therefore, one can set the

weighted age of the observations used in the current forecast of SES equal to the weighted age of

the observations used in the moving average and solve for λ:

1− λ

λ
=

n− 1

2
→ λ =

2

n+ 1
(15)

Figure 9 in Appendix D shows the Bollinger Bands plotted along with the exponentially weighted

moving average and its prediction intervals11 when the weighted age relation, λ = 2
n+1 , is used. The

figure shows that the approximation is quite reasonable, particularly for the center line. This means

that by using the relation λ = 2/(n+ 1), the moving average associated with Bollinger Bands will

provide a satisfactory approximation to the exponential smoothing model with parameter λ. Below

summarizes the connections made so far:

1. Exponential Smoothing and the ARIMA(0,1,1) are equivalent for λ = 1− θ

2. The moving average is well approximated by exponential smoothing for λ = 2/(n+ 1)

3. 1 and 2 imply that the moving average is well approximated by an ARIMA(0,1,1) for 1− θ =

2/(n+ 1)

This means that if we have an ARIMA(0,1,1) model with parameter θ, then we can set n = 2
1−θ − 1

in the Bollinger Band moving average and this will provide a reasonable approximation to that

ARIMA(0,1,1) model. These model connections are illustrated in Figure 3 on page 16.

11The details pertaining to the construction of the prediction intervals for exponential smoothing will not be

discussed here. For details on the computation of the prediction intervals for the ARIMA(0,1,1) one is referred to

[21].
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ARIMA(0,1,1)
λ = (1− θ)

✲ ewma(λ) ✲
n = 2/λ− 1

mave(n)

Figure 3: The lines represent the connections between the models and the transformations required

to map one to the other. The thinner line indicates that the relationship is approximate.

In order to make the final connection that leads to the Fixed Forecast Maximum Duration Bands

pairs trading strategy, in what follows we briefly introduce state space models. We should point out

that most of the introduction is taken from [22].

5.4 Introduction To State Space Models

From the 1950’s on, electrical engineers were particularly interested in the following problem in

linear systems theory which is shown in Figure 4 on page 17. Suppose we have an unobserved input

signal at time t, θt−1 which is known as the system state. The state process evolves in accordance

with a linear transform of θt−1 to which is added a noise process ωt. This process is described by

the left hand side box in Figure 4. The arrow from θt−1 to the box containing F′

t represents the

linear transformation of the system state producing the system output zt = F′

tθt−1. Finally, added

to zt is a noise process ǫt which results in the measurement process yt. Only the sequence {yt} is

observed. The linear system is described by equations (16) and (17).

yt = F′

tθt−1 + ǫt, ǫt ∼ N[0, Vt] (16)

θt = Gtθt−1 + ωt, ωt ∼ N[0,Wt] (17)

with initial conditions

(θ0 | D0) ∼ N[m0,C0]

where D0 denotes the information available at time zero. The normality assumptions on the error

terms are not absolutely essential but they greatly simplify the inferential framework so they are

usually imposed. The noise processes ǫt and ωt are assumed to be independent and the goal of

the engineers was to produce an estimate of the unobserved system state θt at time t, using the

measurements, y1, . . . , yt. Then, when a new observation, yt+1 is realized, a new estimate of the

unobserved system state θt+1 should be obtained. This came to be known as the filtering problem

and was studied by electrical engineers for many years.
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Figure 4: A schematic diagram representing the filtering problem in electrical engineering.

In an extremely important contribution to the engineering literature, Kalman [23] developed a recur-

sive scheme for updating θt optimally each time a new observation yt is realized. These recursions

became known as the Kalman filter recursions12 and the system described by (16) and (17) became

known as the state space formulation.

Then, in the early 1970’s, Harrison and Stevens [24] bridged the gap between the statistical commu-

nity and the engineering community by showing that the state space formulation could be used by

statisticians to build and estimate models that were already very popular in the statistical litera-

ture. For example, they showed that if one took the state space model and let the matrix Gt be the

identity matrix, then the model was equivalent to a time varying coefficient regression model. This

brought state space models into the statistical community and led to various specific state space

models one of which is described in Section 5.5.

12The recursions are somewhat complicated so they are not given here but they can be found in [11], [12] and

[22].
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5.5 A Simple State Space Formulation: The Random Walk Plus Noise

Model

Suppose that we have the state space formulation represented by (16) and (17) where Ft = 1,

Gt = 1, and θt is is a scalar equal to µt. Then, the state space formulation reduces to what is

termed the random walk plus noise state space model (RWPN) shown below:

yt = µt−1 + ǫt (18)

µt = µt−1 + ηt (19)

where

ǫt ∼ N(0, σ2
ǫ )

ηt ∼ N(0, σ2
η)

As noted previously, ǫt and ηt are assumed to be independent. Eliminating the system variable µt

and creating a stationary model by differencing yt gives:

△yt = ηt−1 + (ǫt − ǫt−1) (20)

Now, we can easily calculate the model autocorrelations , γk, for each k:

γ1 =
−σ2

ǫ

σ2
η + 2σ2

ǫ

γ2 = γ3 = · · · = 0

Since E(△yt) = 0, and the autocorrelations are zero after lag 1, the RWPN model is statistically

equivalent to an ARIMA(0,1,1) model. Note that since all the variances are required to be greater

than zero, we can see by inspection that for this random walk plus noise model, −0.5 < γ1 < 0.

This implies that the parameter space for θ in the equivalent ARIMA(0,1,1) is restricted. In fact,

if we equate γ1 in the random walk plus noise model with γ1 in the ARIMA(0,1,1) model, then the

parameter θ is forced into the range −1 < θ < 0.13

We need to derive the exact relation that maps the random walk plus noise model to the

ARIMA(0,1,1). First of all, it is easy to show that the autocorrelation at lag one of the ARIMA(0,1,1)

defined in equation (14) is θ/(1 + θ2). If we define the signal to noise ratio in the random walk plus

13There is another state space model called the single source of error state space model which does not impose this

restriction. See [18, 22] for details.
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noise model as q = σ2
ǫ/σ

2
η and equate the lag one autcorrelations of each model, we obtain the

following mapping between the two models:

θ = (
√

q2 + 4q − 2− q)/2 (21)

Therefore, given the signal to noise ratio q , we can find the equivalent ARIMA(0,1,1) using the

mapping in equation (21). This connection between the RWPN and the equivalent ARIMA(0,1,1)

allows us to modify Figure 3 on page 16 by including the random walk plus noise model. The

resulting Figure is shown below and illustrates that a rolling window moving average using n as the

window size can be viewed as an approximation to the random walk noise model with a signal to

noise ratio equal to q. What we have shown is that the rolling moving average approach used in

Bollinger Bands, initially thought to be a “poor man’s time varying regression coefficient model”,

may not be as poor as originally thought. More importantly, in the next section we will see how

this connection between the RWPN and the moving average leads to an interesting modification of

Bollinger Bands.

RWPN
θ =

√
q2+4q−2−q

2
✲ ARIMA(0,1,1)

λ = (1− θ)
✲ ewma(λ) ✲

n = 2/λ− 1
mave(n)

Figure 5: Given the various mappings, the moving average construction can be viewed as a approx-

imation to the random walk plus noise model.
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5.6 FFMDPT: A Bollinger Band Variant

In the previous section, we showed that the moving average in Bollinger Bands can viewed as an

approximation to the random walk plus noise state space model with a signal to noise ratio equal

to q. First, in order to make the state space notation consistent with the Bollinger Band notation

previously used where βt has been viewed as being synonymous with mavet, we modify equations

(18) and (19) representing the RWPN by replacing µt with βt everywhere. This results in the RWPN

model equations below:

yt = βt−1 + ǫt (22)

βt = βt−1 + ηt (23)

where

ǫt ∼ N(0, σ2
ǫ )

ηt ∼ N(0, σ2
η)

Equations (22) and (23) shed light into what the BBPT strategy is doing from a state space view-

point. Again, we consider Figure 7 on page 32. From the figure, we can see that after a trade entry

in the BBPT strategy, the moving average, β̂t, is the dynamic forecast for yt and in this sense, its

forecasted equilibrium price. Therefore, if we view the moving average in Bollinger Bands as an

approximation to the random walk plus noise model in (22) and (23), then, after a trade entry, the

Bollinger Band algorithm continues to receive the new data, yt, and the estimate of βt in (23) is

updated accordingly. Note that a statistically consistent update of βt requires that the estimated

signal to noise ratio, q, is remaining constant.

Now, rather than continuing to update the estimate β̂t as if the signal to noise ratio was still q after

trade entry, we can make an alternative assumption. Suppose that, immediately after trade entry,

we view the future yt as missing and then continually forecast as if there was no longer any future yt

available. This assumption could be quite reasonable because any trade entry implies that some kind

of unusual observation or outlier with respect to the current state of the system has been observed.

Once an outlier is observed during the evolution of a state space model, there is little reason to

assume that the state space model is in the same state with respect to q as it was before trade entry.

Once the assumption is made that future yt are missing after trade entry, the observation equation

(22) no longer exists and the original random walk plus noise model represented by (22) and (23)

reduces to a pure random walk model for βt :

βt = βt−1 + ηt (24)
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Note that if βt is evolving as a random walk, then this implies that the optimal forecast to make after

trade entry is β̂tradeentry itself, the estimated value of βt at the time of trade entry. This constant

forecast is the first modification we make to the Bollinger Band algorithm. Rather than using the

moving average, mavet as the forecast at each time t after trade entry, we use the mavetradeentry,

namely the known moving average estimate at time t, as the future forecast at all times t. In this

way, the forecast for where the process will revert is a horizontal line segment (i.e. a constant )

starting at mavetradeentry and we call this forecast the “fixed forecast”.

An advantage to using the “fixed forecast” variant of BBPT (e.g. FFPT) is that if yt does cross

through the fixed forecast, the return generated by the trade will always be greater than the return

generated by the identical trade in the BBPT strategy. This is because, in a long FFPT trade, the

fixed forecast at time t will always greater than the mavet (i.e: the forecast in the BBPT strategy

) and, in a short FFPT trade, the fixed forecast will always less than the mavet. Unfortunately,

the FFPT algorithm also introduces a serious problem. Clearly, since we are assuming that the βt

process is a random walk, the variance of the fixed forecast k periods out is σ2
η ∗ k so as one goes

further and further out, the forecast variance increases linearly with k. More problematic is the

fact that there is a non-zero probability that the yt process may never revert and cross through

the horizontal forecast. Conversely, in the case of Bollinger Bands, the possibility of the yt not

crossing the forecast is extremely unlikely because the moving average forecast is a function of the

yt process and essentially tracks it. In fact, in the BBPT strategy, the only scenario in which the yt

process will not revert to the moving average is one in which the yt process trends permanently in

either direction. Clearly this permanent trending scenario is extremely unlikely in practice. In the

next section, we develop a FFPT trade exit mechanism which remedies its “trade may never exit”

problem.
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5.7 Restricting the Trade Duration in The Fixed Forecast Variant

Recall that, in Section 4.1, we saw that the average duration of losing trades in BBPT strategies

was greater than the average duration of winning trades. Although this relationship was only shown

empirically, we formalize the duration-return relationship in the following theorem:

Theorem 1. Assume that the rolling window size in the BBPT strategy = n, the band width mul-

tiplier = k and that yt touches BBlower at t = t∗ − 1 so that a long trade is generated at t = t∗.

Then the total return of this trade is non-negative if and only if the duration of the trade is less than

or equal to n; i.e. the trade is exited at a time less than or equal to t∗∗ = t∗ + n− 1. This result is

independent of the bandwidth multiplier parameter k.

Proof. See Appendix E.

We should point out that Theorem 1 assumes that slippage does not occur during entry nor exit. By

absence of slippage, we assume that during the time between the trade entry signal and the trade

entry, price erosion does not occur. Similarly, during the time between the trade exit signal and

trade exit, we also assume that price erosion does not occur. If either of these assumptions are not

true, then Theorem 1 will hold only approximately. In fact, if we return to the empirical evidence in

Section 4.1, we see that the average losing trade durations in 2007 for k = 1 and k = 2 and n = 30

were actually slightly less than n = 30. This is inconsistent with Theorem 1 but the inconsistency

only occurs because the BBPT simulations assume that the there is a one day lag between the entry

signal and the entry and a one day lag between the exit signal and the exit. For the k=1 and k=2

cases in 2007 using n = 30, slippage did occur and caused the average duration of the losing trades

to be less than the rolling window size n = 30.

Theorem 1 suggests that a reasonable exit time for a trade in FFPT is the rolling window size

itself.14 The logic behind this idea is that once the trade duration becomes greater than the window

size, by Theorem 1, the trade cannot possibly have an overall positive return. Therefore, intuitively

the rolling window size serves as a reasonable time to exit the trade. Also, exiting at a time t equal

to the rolling window size remedies the original “trade may never exit” problem associated with

the FFPT approach. Therefore, restricting the maximum duration of all FFMDPT trades to the

window size n is the second and final modification to the BBPT strategy and results in a variant we

call the Fixed Forecast Maximum Duration Pairs Trading strategy (FFMDPT). To summarize, the

14Using technical analysis terminology, an exit rule based on a pre-determined length of time is referred to as a

time stop.
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first component of FFMDPT is that the forecast is a constant equal to the original moving average

at trade entry. Secondly, assuming that the window size = n, then, if a trade has not exited by

n periods, the trade is exited at the nth period. Notice that the parameter n in FFMDPT has a

different role from its role in BBPT. In the FFMDPT strategy, the parameter n is used to calculate

the candidate entries BBUpper and BBLower and the exit point mavet. In FFMDPT, the entry

signals are the same as those in BBPT but the exit signal differs because the maximum duration

of any trade is equal to the rolling window size. Figure 20 in Appendix F illustrates the simulation

results of the BPPT strategy and the FFMDPT strategy for the 2004 SAP-Nikkei data using n = 20

and k = 2. Note that in this specific example, the return generated by the FFMDPT strategy is

about three percent greater than that of the BBPT strategy but this will not always be the case in

general. We illustrate specific differences between FFMDPT and BBPT with two detailed examples

in the section that follows.

5.8 BBPT versus FFMDPT: Two Examples

In what follows, we construct two simulations to illustrate how the different exit rules can effect the

relative performance of the BBPT and FFMDPT strategies. The first simulation ran through the

full year of 2004 using n = 20 and k = 2. In this simulation, the FFMDPT strategy outperforms

the BBPT strategy. The second simulation ran through the full the year of 2005 again using the

parameters n = 20 and k = 2. In this simulation, the FFMDPT strategy underperforms the BBPT

strategy. The plots displaying the results of the first simulation and second simulation are shown in

Appendix H on page 55 and 56 respectively. In what follows, we analyze specific trades associated

with the two simulations in detail.

Consider the 2004 simulation. The FFMDPT strategy outperforms the BBPT strategy by approxi-

mately three percent. Although it may not be obvious from the plot, although the three trades in

February, April and June generates similar returns in both strategies, the trades in the FFMDPT

strategy generate slightly larger returns than the corresponding trades in the BBPT strategy. This

is due to the fixed forecast creating larger vertical distance between the entry point and the exit

point. Therefore, conditional on yt touching or crossing the fixed forecast in the FFMDPT strategy,

the associated return will be larger than the return of the same trade in BBPT. Next, consider the

fifth trade in both strategies at the beginning of August. In the FFMDPT strategy, the trade has

a longer duration because it needs to reach the horizontal forecast before it exits. Consequently,

the FFMDPT August trade results in a small loss. On the other hand, the same August trade in

the BBPT strategy exits quickly because the moving average forecast is reached sooner than the
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fixed horizontal forecast. Therefore, the BBPT trade exits earlier than the FFMDPT resulting in a

larger loss. In this particular simulation, because FFMDPT trades are held until the fixed forecast

is reached, this resulted in larger winning trades and smaller losing trades compared to the same

trades in BBPT resulting in relative overperformance of the FFMDPT strategy in 2004.

Next consider the 2005 simulation. The FFMDPT underperforms the BBPT strategy by approx-

imately 1.2 percent. The first trade in the BBPT strategy triggered at the beginning of February

generates a positive return but the same trade in FFMDPT generates a negative return because the

horizontal forecast is never reached so the trade is exited when it reaches the maximum duration.

Unfortunately the maximum duration is reached after the yt process has hit the moving average

and then decreased. The FFMDPT trade exits at a significant loss of almost 1% while the same

trade in the BBPT strategy generates a positive return. The rest of the trades in 2005 generate

approximately the same return in both strategies so the underperformance of the FFMDPT strategy

is essential due to the behavior of the FFMDPT trade at the beginning of February.

5.9 FFMDPT versus BBPT: An Optimized Simulation

Although the 2004 and 2005 simulations highlight the differences between BBPT and FFDMPT,

unfortunately the results are dependent on whether the asset pair being traded, namely the SAP-

Nikkei, exhibits mean reversion.15 There exist various methods for checking or testing its existence

historically, but whether the mean reversion behavior persists in the future is also uncertain. The

point is that any comparison of the effectiveness of pairs trading strategies is confounded with the

possibly unstable mean reverting behavior of the asset pair being traded. The 2004 and 2005 simu-

lations of the SAP-Nikkei Index pair assume that the traded asset pair, SAP-Nikkei, is cointegrated

and this assumption is critical to the performance comparison of the two strategies, BBPT and

FFMDPT. In fact, the FFMDPT strategy is even more dependent on mean reversion behavior be-

cause it requires that the yt process revert all the way back to the forecast at trade entry. In the

case of the BBPT strategy, a positive return can be generated by a trade even when the yt process

does not return to the trade entry forecast. Nevertheless, as long as we are aware that the mean

reversion issue makes the results less definitive, we can compare the performance of the respective

pairs trading strategies assuming that the SAP-Nikkei Index pair is mean reverting.

15The mean reversion assumption can be tested statistically by using the Two Step Engle-Granger test for cointe-

gration [15].
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As explained earlier, the functionality of the parameter n in the FFMDPT strategy is different from

that of the parameter n in the BBPT strategy. Therefore using the same parameter combination

of n and k when comparing the two strategies is not necessarily correct. Given the difference in

functionality, it is more reasonable to view the parameter n as being a different parameter in each

strategy, namely nFFMDPT and nBBPT respectively. A more robust methodology for analyzing

strategy performance is to first find the optimal parameters nBBPT and nFFMDPT for the respective

pair strategies over some historical period called the in sample period. These optimized values can

then be used out of sample and the out of sample performance compared. Using R [14], this

methodology was implemented for the SAP-Nikkei index pair for each year from 2003-2011. Three

simulations were run for which the value of the parameter k was 1,1.5 and 2.0. For each year, the

optimal values of nBBPT and nFFMDPT were found by searching over values from 10 to 50 in steps

of 1. These optimal values were then used in the following year and the performance in that year

was calculated. The results are shown in Tables I, II and III in Appendix I where 2003-4 denotes

that the in sample period was 2003 and the out of sample period was 2004.16 Table I indicates that

there is no clear performance difference for k = 1. In four of the eight years, BBPT outperformed

FFMDPT with the only large difference occurring in 2008 when FFMDPT outperformed BBPT by

almost ten percent. In Table II when k = 1.5 was used, the BBPT strategy significantly outperforms

the FFMDPT strategy. In fact, in six out of the eight years, the BBPT returns are larger and, in

2004, 2005 and 2007, more than five percent larger. Finally, for k = 2, the BBPT strategy again

outperforms the FFMDPT strategy in six out of the 8 years. In this case, the differences generally

hover around the 2% level.

In addition to the question of the asset pair possessing mean reverting behavior, another problem

with assessing relative performance using an optimization approach is the possibility of overfitting.

A current pitfall of the optimization approach is that the model may stick too closely to the data

over which the optimization was performed. Consequently, the model ends up learning irrelevant

details of the in sample data which leads to poor generalization when the parameters are used on the

out of sample data. A informal way of thinking about overfitting is that because such a fine search

was used to find the optimal value of the respective parameters in the in sample period, it might be

the case that a diamond was found in sample but corrodes quickly when used out of sample. There

are various methodologies in the literature that attempt to deal with the issue of overfitting but

these will not be discussed in this study. For an interesting discussion of overfitting and methods

for lessening its effect, the reader is referred to [25]. One possible way to reduce the amount of

overfitting is to optimize more frequently. For example, rather than optimizing the parameters over

16For the 2010-11 period only the first four months of data in 2011 was available.
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one year and then calculating the performance in the following year, we could use a shorter in sample

and out of sample period such as three months.17 Another possible way to decrease the possibility of

overfitting is to reduce the parameter grid size search. For example, one could decrease the number

of candidate values of nFFDMPT and nBBPT by only allowing values from 1 to 50 in steps of say 5.

In summary, although the simulation results provide some evidence that the BBPT strategy out-

performs the FFMDPT strategy, there are issues that limit the strength of this evidence. The first

is the question of the existence of mean reversion behavior in the specific asset pair analyzed. The

second is the possibility of overfitting when we are optimizing over the parameters nFFMDPT and

nBBPT .

6 Conclusions and Future Research

This article contributed towards reconciling the relationship between Bollinger Bands and time series

models. First we showed that, aside from requiring a slight modification to the prediction bands, the

Bollinger Band components can be mapped exactly to the outputs of a classical regression model.

This mapping provides a statistical foundation for Bollinger Bands and eliminates the algorithmic

and ad hoc reputation it has had until now. Also, through the use of a series of relations linking

various time series models, we were able to show that Bollinger Bands can be viewed as a reasonable

approximation to the random walk plus noise (RWPN) state space model.

Next we proved an interesting result connecting the return-duration relationship in Bollinger Bands.

Although the result of theorem was proven with respect to Bollinger Bands, its importance lies in the

fact that it holds for all cases where one uses distance from a moving average as an entry signal and

reversion to the moving average as an exit signal. Then by modifying the underlying assumption

of the approximate RWPN model and using the return-duration result for moving averages, we

developed a variant of Bollinger Bands called Fixed Forecast Maximum Duration Bands (FFMDPT).

In the case of the SAP-Nikkei data from 2003-2010, FFMDPT generates returns that generally

underperform the BBPT strategy particularly when k = 1.5. At the same time, there are l imitations

to the strength of the result when doing such a strategy comparison and some possible remedies for

the limitations were discussed.

One future research possibility is to compare the FFMDPT and BBPT strategies but optimize

17Note that three months is the shortest sample period that could be used because the optimization uses a grid

from n = 10 to n = 50. Since we want the n=10 simulation and the n=50 simulation to start at the same time, a

minimum of fifty data points are required to calculate the first moving average.
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over the parameters n and k jointly. Although it was shown that the return-duration proof was

independent of k, the entry signal in FFMDPT and BBPT is still dependent on k. Therefore,

optimizing the two parameters n and k jointly may lead to different results. Also, it would be

useful if additional pairs were investigated so that the performance results were not specific to the

SAP-Nikkei Index pair. Tests for cointegration of the pairs could be done in order to ensure that

only pairs that were cointegrated historically were included in the performance comparison.

Another research area would be to take the standard Bollinger Band pairs trading strategy and

use the theorem result to change the standard exit rule by exiting the trade whenever the trading

duration is equal to the rolling window size. Although this type of exit rule does mean that one has

given up the chance to gain back some of the loss from the losing trade, could possibly utilize capital

more efficiently by restricting live trades to only those which have a chance of being profitable.

Clearly, this type of strategy implies that the Bollinger Band parameters, n and k may need to be

changed also.

Finally, another research direction would involve implementing a statistically consistent approach

for capturing reversion behavior. Bollinger Bands are still only an approximation to a random walk

plus noise model because the algorithm is such that observations with an age greater than the rolling

window size ago are given a weight of zero during estimation. Rather than using Bollinger Bands to

implement the pairs trading strategy, the Kalman filter approach could be used directly by utilizing

the recursive updating equations. Implementing the Kalman filter approach would eliminate the

parameter n but would necessitate estimating the observation variance and the system variance (i.e.

q). The possibility of overfitting would no longer be an issue because there would no longer be a

need for optimization over the rolling window size parameter n. At the same time, one would still

need to do an investigation into what the optimal re-estimation frequency for the RWPN variances

should be.
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Appendices

A Illustrating the Bollinger Band Construction

0 20 40 60 80 100

−
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−
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time

BOLLINGER BANDS

          Moving Average Window = 20 and Width Multiplier = 2

Random Walk
Mave
BLower
BUpper

Figure 6: A simple example that illustrates the construction of Bollinger Bands. A random walk

series was generated initially. The green center line is the n = 20 day moving average of the random

walk series and BBupper and BBlower are k = 2 standard deviations above and below the center

line.
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B Illustrating the Use of Bollinger Bands in Pairs Trading

Figure 7: The use of Bollinger Bands in a pairs trading strategy. The center line in the figure is

the n = 20 day moving average and BBupper and BBlower are k = 2 standard deviations above

and below the center line. The crossing of BBupper from below (i.e. red arrow) or BBlower from

above (i.e. green arrow) triggers a short trade (i.e. red arrow) or long trade (i.e. green arrow ).

The position is held (i.e. line extends) until the series reverts to the center line. resulting in either

a winning trade (i.e. green line) or losing trade (i.e. red line). Note that Z = SAP Index and X =

Nikkie Index so that the plotted series is y = ln(Pz/Px)t.
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C BBPT Winning Trades Have Shorter Durations Than Los-

ing Trades
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Figure 8: The results of the Bollinger Band pairs trading strategy of the SAP versus the Nikkei

simulated over different time periods using various values of the parameters n and k. The average

durations indicate that the nature of the Bollinger Band methodology is such that winning trades

have an average duration consistently shorter than that of losing trades.
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D An Illustration of the Weighted Age Relation λ = 2
n+1

Figure 9: The figure shows how similar Bollinger Bands are to the EWMA when the weighted age

is matched using the relation λ = 2
n+1 The approximation is quite reasonable with respect to the

center line but not quite as close with respect to BBUpper and BBLower

.
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E A Proof That Any Trade In A Bollinger Band Pairs Trad-

ing Strategy Has a Non-Negative Return If and Only If

The Total Duration Is Less Than Or Equal To n Where n

Is The Rolling Window Size.

Before going into the details of the theorem, we should point out that the theorem is applicable to a

larger class of models than just the BBPT strategy. Since the theorem result is independent of the

band width multiplier, k, it is applicable to any trading algorithm where the log price of the traded

asset being some threshold distance away from its moving average triggers the entry signal and the

subsequent crossing back of the log price of the traded asset through the moving average triggers

the exit signal. A well known example of such a strategy is the BBPT strategy but there may be

other propietary moving average type strategies that meet this criterion also. One obvious example

would be where Bollinger Bands are used on a single stock itself rather than a pair of stocks. In

that case, yt would denote the price itself rather than the price ratio but the result of the theorem

would still apply.

Since Theorem 1 requires nine lemmas before it can be proven, details about the notation used and

assumptions made are provided below. The two figures that then follow make the assumptions and

notation described below more tangible. Figure 10 on page 37 illustrates how the endpoints of the

moving average duration are defined. Figure 11 on page 38 uses a long trade as an example to

illustrate other assumptions.

1. yt denotes the price ratio of the paired asset at time t and the term “Bollinger Band exit rule”

refers to the rule where one exits from the trade when the log(priceratio) at time t crosses

through or is equal to the moving average of the log(priceratio) at time t.

2. t∗ denotes the entry time of a trade and t∗∗ denotes the time period associated with a trade

duration equal to the window size. For example, if the window size n was equal to 10 and a

trade was entered into at t∗ = 15, then t∗∗ = t∗ + n− 1 = 24. Therefore, a trade entered into

at the beginning of t = t∗ and exited from at the end of t = t∗∗ would be viewed as having

trade duration of 10 periods.

3. We assume a one period time lag between the entry signal time and trade entry time purely for

clarity purposes. We assume that slippage18 does not occur during the one unit time period

18Slippage during entry is defined as price erosion due to the delay between when a trade entry is signaled and
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between the entry signal and the trade entry. In fact, with respect to entry slippage, we go

further than this by assuming that not only is there never price erosion during entry but also

that there is a non-zero infinitesimal price improvement19. For example, if a long entry signal

is triggered by a price say log(yt∗−1), then we will assume that the actual entry occurs at a

price log(yt∗−1)−δ where δ > 0. This additional price improvement assumption is only needed

so that edge cases do not need to be considered in the steps of the proof. Also, the size of δ

does not affect the derivation of the result as long as it positive so it can be assumed that δ is

infinitesimally small.

4. One can think of the discrete time block denoted by t as having a length of one period and

an n period window as being a set of these n blocks stacked adjacently to each other. The

convention associated with a given window with endpoints t∗ and t∗∗ is that entries can occur

at t∗, t∗+1, t∗+2, t∗+3, . . . , t∗∗ and exits can occur at t∗+1, t∗+2, t∗+3, t∗+4, . . . , t∗∗+1. If we

say that there was an exit signal at time t′, implicit in this statement is that the first possible

exit time is the end of time t′ which is equivalent to the time right before the beginning of

period t = t′ +1. Note that this does not imply the possibility of slippage during exit because

it is assumed that the price process of log(yt) is discrete so that the price does not change

during the time block associated with the period labeled t′. Simply speaking, we assume that

the discrete price process is such that the value of log(yt′) at the beginning of the time block

denoted by t′ is the same the value of log(yt′) at the end of the same time block t′. We then

assume an instantaneous change in log(yt) just as the beginning of the new time block t′+1 is

reached. Obviously, this is an over-simplification of how the actual price process evolves but for

purposes of clarity we make this assumption. The main point is that assuming an exit always

occurs at the end of a time block is equivalent to assuming that there is an instantaneous exit

whenever an exit signal is observed and is therefore equivalent to assuming zero slippage on

exit.

5. Although the proof relies on the use of log(priceratio) as the scale on the vertical axis, this is

not a restrictive assumption because the entries and exits calculated can always be transformed

back to price ratio space. The relation that results from using the log(priceratio) on the vertical

axis will be stated as a lemma. Consequently, before proving the main result, we need to prove

this lemma and various other lemmas which will be used in the proof of Theorem 1.20

when the trade is actually entered. Slippage during exit is defined analogously.
19The price improvement on entry assumption would not be necessary if we assumed that there was no time lag

between the signal and the entry. By assuming a one period time lag, we separate the defined window from the signal

price and provides more clarity when explaining the steps of the proof
20All of the lemmas contain arguments under the assumption that the BBPT strategy generated a long trade. This
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The Notion Of Time In The Proof Of Theorem One

t1 t2 t3 t4 t5 t* − 1 t*

WINDOW
BEGIN

t8 t9 t10 t11 t12 t13 t14 t15 t**

WINDOW
END

window size = n = 10

Long Position Is Entered Into At The Beginning of  t = t** .
Given The Entry Point, The End Points of The Window Are Defined As
The Beginning of  t = t* And The End of  t = t** Respectively.

 NOTE: Each time block represents one time period. 
 We assume that the log price yt stays constant during a time block 
 and only changes instantaneously at the beginning of each new time block.

log(yt)
signal price
entry price

Figure 10: Illustrating how the time periods and window duration endpoints are constructed in the

proofs of the lemmas and the main theorem. A long trade is triggered at t = t∗− 1 and entered into

at the beginning of t = t∗. The first possible exit is at the end of t = t∗ which is equivalent to the

beginning of t = t∗ + 1. The trade duration is equivalent to the rolling window size = 10 when the

trade exit occurs at the end of t = t∗∗ which is equivalent to the beginning of the period t = t∗∗ +1.

is without loss of generality because symmetric arguments hold if the assumption was that a short trade had been

generated.
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Notation and Assumptions Used In The Proof
Of Theorem One

t1 t2 t3 t4 t5 t* − 1 t*

WINDOW
BEGIN

t7 t8 t9 t10 t11 t12 t13 t14 t** t16

WINDOW
END

t17 t18

EXIT

t19

log(yt*−1)
log(yt*)

log(yt18
)

window size = n = 10 and trade duration = 12
log(yt)
BBUpper
mave of log(yt)
BBLower
signal price
entry price
exit price

NOTE: Given The Entry Point, The Moving Window Duration Is Defined As
Starting At The Beginning of  t = t* And Ending At The End of  t = t** .

{Positive Slippage

Figure 11: Illustrating the various notation and assumptions used in the proofs of the various

lemmas and main theorem. A long trade is triggered at t = t∗ − 1 and entered into at t = t∗. The

total trade duration is longer than the moving average window duration because the actual trade

duration = 12 and the moving average window duration = 10. The overall log return of the trade

is negative.
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E.1 Preliminary Lemmas

Lemma 1. Let yt denote the price ratio of a paired asset at time t and consider a window of size

n whose endpoints are denoted as t∗ and t∗∗. Assume that a long trade has been generated at the

beginning of t = t∗ − 1 so that the entry takes place at the beginning of t = t∗. Suppose that the

Bollinger Band moving exit rule is ignored in that the position is held for a fixed n = rolling window

size periods. If the overall log return of the paired asset over the period from the beginning of t = t∗

to the end of t = t∗∗ is ǫ where −∞ < ǫ < ∞, then the following relation holds:

log(yt∗∗) = log(yt∗) + ǫ

Proof. Consider the interval [t∗, t∗∗]. Since the return over this interval is ǫ, by the additiviy of log

returns this implies that
∑t=t∗∗

t=t∗+1 △tlog(yt) = ǫ. But the terms in the sum represent a telescoping

series which reduces to log(yt∗∗)− log(yt∗) so that log(yt∗∗) = log(yt∗) + ǫ. Although the relation is

obvious, it will turn out to be useful when proving various other lemmas that follow.

A sample plot of log prices is shown in Figure 12 below and gives the intuition behind Lemma 1.

The Log Return Over Any Time Window Is Only A Function 
 Of The First Observation and Last Observation In The Window

t* t2 t3 t4 t5 t6 t7 t8 t9 t**

 log(yt*)

 log(yt*) + ε

 log(yt**) = log(yt*) + ε

 ε

Figure 12: Illustrating that only the first price observation and last price observation are needed

to calculate the log return over any time window.
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Lemma 2. Let yt denote the price ratio of a paired asset at time t and consider a window of size

n whose endpoints are denoted as t∗ and t∗∗. Assume that a long trade has been generated at the

beginning of t = t∗ − 1 so that the entry takes place at the beginning of t = t∗. Assume that the

Bollinger Band exit rule is the exit rule. Then, if yt remains constant from the beginning of t = t∗

up until the end of t = t∗∗, then mavet∗∗ = log(yt∗∗) = log(yt∗) and the long trade will be exited at

the end of t = t∗∗.

Proof. Notice that at the end of period t = t∗∗, aside from log(yt∗) itself, mavet∗∗ will not contain any

of the points contained in the window when t = t∗∗ is the right endpoint of the window. Therefore

only points that are equal to log(yt∗) will be contained in the calculation of mavet∗∗ . Obviously,

the average of the n log(yt) values in the window at t∗∗ = log(yt∗). Therefore mavet∗∗ = log(yt∗).

But log(yt) did not change over the time between t∗ and t∗∗ so log(yt∗∗) = log(yt∗) which means

mavet∗∗ = log(yt∗∗) so that a trade exit is triggered. Therefore the trade is exited with a log return

equal to zero since log(yt) was constant over the trade duration. An illustration of this argument is

provided in Figure 13 on page 41.

Lemma 3. Let yt denote the price ratio of a paired asset at time t and consider a window of size

n whose endpoints are denoted as t∗ and t∗∗. Assume that a long trade has been generated at the

beginning of t = t∗ − 1 so that the entry takes place at the beginning of t = t∗. Also, suppose that

the Bollinger Band exit rule is ignored in that the position is held for a fixed n = rolling window size

periods. If the overall log return of the paired asset over the period from the beginning of t = t∗ to

the end of t = t∗∗ is −1.0× ǫ where ǫ > 0, then the following relation holds:

log(yt∗)− ǫ < mavet∗∗ < log(yt∗)

where mavet∗∗ =
∑

t=t
∗∗

t=t∗
log(yt)

n

Proof. We can obtain the upper and lower bounds for mavet∗∗ by considering two extreme scenarios

in which the overall log return of the trade is−1.0×ǫ.21 This two extreme scenario proof methodology

is justified because any other realization where the return over the window is equal to −1.0× ǫ is a

realization that also maintains the same upper and lower bounds.

First consider scenario one where log(yt) moves to the level (log(yt∗) − ǫ) at the beginning

of t = t∗ + 1 and then remains constant after that until the end of t = t∗∗ is reached.22

21Notice that this proof is essentially assuming a discrete process for log(yt) which is consistent with the original

assumption that yt process only changes at the end of each period t.
22Note that the log return over the window in scenario one is −1.0× ǫ.
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Long Trade Exit Behavior When yt Is Constant 
Window Size: n =  10

 log(yt*)

log(yt)
BBUpper
mave of yt

BBLower
signal price

t1 t2 t3 t4 t5 t6 t7 t8 t9 t* − 1 t* t12 t13 t14 t15 t16 t17 t18 t19 t**

WINDOW
BEGIN

WINDOW
END

 mavet** =  log(yt**)

Figure 13: Illustrating that a trade will exit at the end of t = t∗∗ when the price remains constant

over n = rolling window size periods.

By definition, mavet∗∗ = log(yt∗ )
n +

∑
t=t

∗∗

t=(t∗+1)(log(yt∗−ǫ))

n . But since log(yt) = (log(yt∗ − ǫ)) at

t = t∗ + 1 and remains at that level after t = t∗ + 1, the previous expression for mavet∗∗ re-

duces to
(

1
n × log(yt∗) +

n−1
n × (log(yt∗)− ǫ)

)

. But since log(yt∗) > (log(yt∗)− ǫ), this implies that

mavet∗∗ =
(

1
n × log(yt∗) +

n−1
n × (log(yt∗)− ǫ)

)

> log(yt∗)−ǫ.23 Therefore the opened lower bound

23One can think of this opened lower bound as the discrete counterpart of the integral
∫
t
∗∗

t∗
(log(yt)−ǫ) dt

t∗∗−t∗
where

(log(yt)− ǫ) is constant over the period t = t∗ to t = t∗∗.
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Extreme Scenario I

t* t2 t3 t4 t5 t6 t7 t8 t9 t**

 log(yt*)

 log(yt*) − ε

 log(yt*) − ε < mavet**

 ε

  log(yt)
  mavet**

Extreme Scenario II

t* t2 t3 t4 t5 t6 t7 t8 t9 t**

 mavet** < log(yt*)

 log(yt*)

 log(yt*) − ε

 ε

  log(yt)
  mavet**

Figure 14: Illustrating the two extreme scenarios used in the proof of Lemma 3: (a) the LHS

inequality and (b) the RHS inequality.

for mavet∗∗ is log(yt∗)− ǫ.

Next consider scenario two where log(yt) is constant over the window and then moves to (log(yt∗)−ǫ)

just as the beginning of t = t∗∗ is reached. We can again use the discrete analog of an integration

argument to show that mavet∗∗ < (n×log(yt∗ ))
n = log(yt∗).

24 Therefore the opened upper bound for

mavet∗∗ is log(yt∗). We illustrate the previous scenario arguments in Figure 14 above.

It will turn out to be convenient to re-write the relation in Lemma 3 so that the right hand side is

an equality. Therefore, we re-state Lemma 3 in the following equivalent way:

log(yt∗)− ǫ1 < mavet∗∗ = log(yt∗)− ǫ2 (25)

where mavet∗∗ =
∑

t=t
∗∗

t=t∗
log(yt)

n , ǫ1 > 0, ǫ2 > 0 and ǫ2 < ǫ1.

In the steps of the proof of Lemma 3, since the rolling window size = n periods was used as the

holding period, it was unnecessary to consider the values of log(yt) for t < t∗ because, by the time

24One can think of this opened upper bound as the discrete counterpart of the integral
∫
t
∗∗

t∗
(log(yt) dt

t∗∗−t∗
where log(yt)

is constant over the period t = t∗ to t = t∗∗.
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t = t∗∗, these values are not contained in the rolling window with right endpoint t = t∗∗. Fortunately,

if we make one extra assumption about the values of log(yt) for a specific period [t, t∗), then the

lower bound in Lemma 3 can be strengthened to hold for any t = t′ where t∗ < t′ < t∗∗, rather than

just t∗∗, resulting in Lemma 4

Lemma 4. Let yt denote the price ratio of a paired asset at time t and consider a window of size

n whose endpoints are denoted as t∗ and t∗∗. Assume that a long trade has been generated at the

beginning of t = t∗ − 1 so that the entry takes place at the beginning of t = t∗. Let t = t′ be any time

point between t = t∗ and t = t∗∗ such that t∗ < t′ < t∗∗. Again suppose that the Bollinger Band

moving average exit rule is disregarded in that the position is held for a fixed (t′ − t∗) = n′ periods.

If the overall log return of the paired asset over a period from the beginning of t = t∗ to the end of

t = t′ is −1.0 × ǫ where ǫ > 0 and log(yt) > (log(yt∗ − ǫ) ∀t such that (t∗ − n′ − 1) ≤ t < t∗, then

the following relation holds:

log(yt∗)− ǫ < mavet′ (26)

where mavet′ =
∑

t=t
′

t=(t∗−n′
−1)

log(yt)

n

Proof. We can use the same integration argument used for the lower bound result of Lemma 3 except,

in this case, the integral used to derive the lower bound will now contain the upper limit t′ rather than

t∗∗. Note though that, since we are no longer assuming that the return is calculated over the window

with t = t∗∗ as the right end point, mavet′ will still contain values of log(yt) ∀t (t∗−n′−1) ≤ t < t∗.

Therefore, the extra condition on log(yt) in [(t∗ − n′ − 1), t∗) is required in order to ensure that the

same integration argument will still hold for the lower bound. This is because the integration starts

from t = t∗. Therefore, for the relation to be true when part of the interval is to the left of the

window and therefore not included in the integral, the extra condition is required for the log(yt)

values in that part of the interval.

Lemma 5. Let yt denote the price ratio of a paired asset at time t and consider a window of size

n whose endpoints are denoted as t∗ and t∗∗. Assume that a long trade has been generated at the

beginning of t = t∗ − 1 so that the entry takes place at the beginning of t = t∗. Again suppose that

the Bollinger Band moving average exit rule is disregarded in that the position is held for a fixed n

= rolling window size periods. If the overall log return of the paired asset over a period from the

beginning of t = t∗ to the end of t = t∗∗ is +1.0× ǫ where ǫ > 0, then the following relation holds:

log(yt∗) < mavet∗∗ < log(yt∗) + ǫ

where mavet∗∗ =
∑

t=t
∗∗

t=t∗
log(yt)

n
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Extreme Scenario I

t* t2 t3 t4 t5 t6 t7 t8 t9 t**

 log(yt*) < mavet**

 log(yt*)

 log(yt*) + ε

 ε

  log(yt)
  mavet**

Extreme Scenario II

t* t2 t3 t4 t5 t6 t7 t8 t9 t**

 mavet** < log(yt*) + ε

 log(yt*)

 log(yt*) + ε

 ε

  log(yt)
  mavet**

Figure 15: Illustrating the two extreme scenarios used in the proof of Lemma 5: (a) the LHS

inequality and (b) the RHS inequality.

Proof. The proof uses similar integration arguments to those used in Lemma 3 so the details will

not be included here. We illustrate the previous scenario arguments in Figure 15 above.

Just as was the case with Lemma 3, since the rolling window size = n periods was used as the holding

period in the proof of Lemma 5, it was unnecessary to consider the values of log(yt) for t < t∗ in the

proof because, by the time t = t∗∗ is reached, these values are not contained in the rolling window

with right endpoint t = t∗∗. Again, if we make one extra assumption about these values, then the

upper bound in Lemma 5 can be strengthened to hold for any t = t′ where t∗ < t′ < t∗∗ rather than

just t∗∗, resulting in Lemma 6.
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Lemma 6. Let yt denote the price ratio of a paired asset at time t and consider a window of size

n whose endpoints are denoted as t∗ and t∗∗. Assume that a long trade has been generated at the

beginning of t = t∗ − 1 so that the entry takes place at the beginning of t = t∗. Let t = t′ be any time

point between t = t∗ and t = t∗∗ such that t∗ < t′ < t∗∗. Again suppose that the Bollinger Band

moving average exit rule is disregarded in that the position is held for a fixed (t′ − t∗) = n′ periods.

If the overall log return of the paired asset over the period from the beginning of t = t∗ to the end of

t = t′ is +1.0 × ǫ where ǫ > 0 and log(yt) < mavet∗ ∀t such that (t∗ − n′ − 1) ≤ t < t∗, then the

following relation holds:

mavet′ < log(yt∗) + ǫ (27)

where mavet′ =
∑

t=t
′

t=(t∗−n′
−1)

log(yt)

n

Proof. We can use the same integration argument used for the upper bound result of Lemma 5

except, in this case, the integral used to derive the upper bound will contain the upper limit t′

rather than t∗∗. Note though just as was the case in Lemma 4, since we are no longer assuming

that the return is calculated over the window with t = t∗∗ as the right end point, mavet′ will still

contain values of log(yt) ∀t (t∗ − n′ − 1) ≤ t < t∗. Therefore, the extra condition on log(yt) in

[(t∗ −n′ − 1), t∗) is required in order to ensure that the same integration argument will still hold for

the upper bound. Since the integration starts from t = t∗, for the relation to be true when part of

the interval is to the left of t = t∗ and therefore not included in the integral, the extra condition is

required for the log(yt) values in that part of the interval.

The next lemma is stated below.

Lemma 7. Let yt denote the price ratio of a paired asset at time t and consider a window of size

n whose endpoints are denoted as t∗ and t∗∗. Assume that a long trade has been generated at the

beginning of t = t∗ − 1 so that the entry takes place at the beginning of t = t∗. Let mavet∗ denote

the moving average of the paired asset at time t∗. Then the maximum possible overall log return that

can be generated by the trade using the Bollinger Band rule is less than (mavet∗ − log(yt∗)) = ǫ1 > 0

which is the initial difference between mavet at entry and log(yt) at entry.

Proof. We will assume that, with the Bollinger Band exit rule ignored, the aforementioned trade

generates an overall log return of +1.0∗ ǫ1 from the beginning of t = t∗ to end of t = t′ where ǫ1 > 0.

Also, we will assume that t′ − t∗ = n′ periods. Then we will show that if one had used the Bollinger

Band exit rule to exit from the same trade, the overall log return generated would be less than ǫ1.
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This will complete the proof because the overall log return assumed, ǫ1, is equal to the difference

between the moving average at entry and the log price at entry.

So assume that the long trade position that was initiated at t = t∗ was held for n′ periods to the

end of t = t′ without regard to the Bollinger Band exit rule and that it generated a return of

+1.0 × ǫ1 = mavet∗ − log(yt∗). Notice that the conditions of Lemma 6 are met because, since a

long trade was generated at t = t∗ − 1, it should be the case that log(yt) < mavet∗ ∀t such that

(t∗−n′−1) ≤ t < t∗25. Therefore, by Lemma 6, we know that mavet′ < log(yt∗)+ ǫ1 for any t′ > t∗

and t′ <= t∗∗. But by definition, log(yt′) = log(yt∗) + ǫ1 which means that mavet′ < log(yt′). But

this means that mavet′ must have decreased from its original value of mavet∗ because otherwise it

would be equal to log(yt′) since log(yt∗) + ǫ1 = mavet∗ . But if mavet′ decreased from its original

value of mavet∗ , then this implies that log(yt) had to have crossed it at some earlier period t′′ < t′

and, since log(yt) increased from the beginning of t = t∗ to the end of t = t′, the amount that

log(yt) had to increase in order to cross through mavet had to be less than (mavet∗ − log(yt∗)) = ǫ1.

Since t′ was arbitrary, this result is true for any t where t∗ < t <= t∗∗, so we have shown that

when using the Bollinger Band exit rule, the overall log return generated by any trade is less than

(mavet∗ − log(yt∗)) = ǫ1. An illustration of this argument is provided in Figure 16 on page 48.

Finally we need to state and prove Lemma 8.

Lemma 8. Let yt denote the price ratio of a paired asset at time t and consider a window of size

n whose endpoints are denoted as t∗ and t∗∗. Assume that a long trade has been generated at the

beginning of t = t∗ − 1 so that the entry takes place at the beginning of t = t∗. Assume that the

Bollinger Band exit rule is being used. Then, any long trade with an overall non-negative log return

that has reached the end of t∗∗ will be exited at the end of t = t∗∗. Conversely, any trade with an

overall negative log return that has reached the end of t = t∗∗ will not be exited at the end of t = t∗∗.

Proof. Recall that Lemma 2 says that if log(yt) is constant over the full window from the beginning

of t = t∗ to the end of t = t∗, then there will be an exit at the end of t = t∗ because log(yt∗∗)

and mavet∗∗ will be equal. We again will use two extreme scenarios along with Lemma 2 in order

25In order to be absolutely certain that log(yt∗ ) is less than mavet∗ ∀t such that (t∗ − n′ − 1) ≤ t < t∗, we need

to assume that a separate long trade was not completed during these (n′ + 1) time periods. If a separate long trade

was completed during this time period and this trade was generated by a sudden large and sharp downward spike in

log(priceratio) and exited due to another sudden large and sharp upward spike in log(priceratio), then it possible

that the condition will not hold. Although the probability of this event is quite small, for this reason we need to make

the assumption that a separate long trade was not completed during the previous (n′ + 1) periods.
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to prove Lemma 8. Figure 17 on page 49 provides graphical representations of the two extreme

scenarios

First consider scenario one where log(yt) is constant from the beginning of t = t∗ to the end of

t = t∗∗ − 1 and then increases an infinitesimally small amount equal to +1.0 × ǫ at the beginning

of t = t∗∗. This implies that the log return over the full window is +1.0 × ǫ. Note that for any

given unit period increase in log(yt), by definition the moving average mavet always increases by a

smaller amount. This fact along with Lemma 2 implies that log(yt) will cross mavet from below at

t = t∗∗ and the trade will exit at the end of t = t∗∗.

Next consider scenario two where log(yt) is constant from the beginning of t = t∗ to the end of

t = t∗∗ − 1 and then decreases an infinitesimally small amount equal to −1.0× ǫ at the beginning of

t = t∗∗. This implies that the log return over the full window is −1.0 × ǫ. Note that for any given

decrease in log(yt), the moving average mavet always increases by a smaller amount in absolute

value. This fact along with Lemma 2 implies that log(yt) will not cross mavet from below at t = t∗∗

and therefore the trade will not exit at the end of t = t∗∗.
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Lemma Seven

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t14 t15 t18 t19 t20t* t’’ t’

{ ε1 } ε1

mavet*>mavet’

log(yt*)

log(yt’)
log(yt’’) }  ε2

Entry Point of Long Trade Occurs At Beginning of  t = t* Denoted By  
Assume That Initial Distance From  yt* To mavet* = ε1 
Eventually By The Beginning of  t = t’ The Return To The Position is  ε1

 But  mavet’ <  mavet*

So This Means That  yt Crossed Through  mavet At Some  t <  t’ Denoted By  
Therefore The  Return Due To The Bollinger Exit  ε2  Has To Be  Less Than ε1

But The Choice of  t = t’  Was Arbitrary
This Implies That Result Has To Be True For Every  t’ where t* < t’ <=  t**

log(yt)
BBUpper
mave of log(yt)
BBLower
entry price
exit price

Figure 16: Illustrating That The Maximum Log Return of A Bollinger Band Trade Is Always Less

Than The Initial Difference Between The Moving Average At Entry And The Log(PriceRatio) At

Entry.
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Extreme Scenario I

t* t2 t3 t4 t5 t6 t7 t8 t9 t**

 mavet** < log(yt**)

 log(yt*)

log(yt*) + ε
 ε

  log(yt)
  mavet**−1

  mavet**

Extreme Scenario II

t* t2 t3 t4 t5 t6 t7 t8 t9 t**

 mavet** > log(yt**)

 log(yt*)

 log(yt*) − ε
 ε

  log(yt)
  mavet**−1

  mavet**

Figure 17: Scenario I: An Infinitesimal Positive Return Right Before t = t∗ Guarantees An Exit At

The End Of t = t∗∗. Scenario II: An Infinitesimal Negative Return Right Before t = t∗ Guarantees

A Non-Exit At The End Of t = t∗∗.

Given the various lemmas, we can prove Theorem 1. We repeat the theorem statement here.

Theorem 1. Assume that the rolling window size in the BBPT strategy = n, the band width mul-

tiplier = k and that a long trade is generated at t = t∗ − 1. so that the entry takes place at the

beginning of t = t∗. Then the overall log return of this trade using the Bollinger Band exit rule

is non-negative if and only if the duration of the trade is less than or equal to n; i.e. the trade is

exited at a time t less than or equal to t∗∗ = t∗ + n− 1. This result is independent of the bandwidth

multiplier parameter k.
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Proof. First we prove the if part of Theorem 1 which means that we need to show that if the pair

trade has a non-negative overall log return, then the total trade duration has to be less than or equal

to n where n is the rolling window size. First, assume that the generated trade is exited at the end

of some time t = t′. Clearly, if the trade has a non-negative overall log return, then this implies that

log(yt′)− log(yt∗) >= 0 where t′ is the exit time of the trade. So let us prove the if part of Theorem

1 by contradiction: We will assume that log(yt′) − log(yt∗) >= 0 (i.e. a non negative overall total

log return from entry to exit ) and that t′ > t∗∗ so that the duration of the trade is greater than n.

Then we will show that these assumptions lead to a contradiction.

In order to visualize the argument that follows , a long trade example is provided in Figure 18 on

page 51. First of all, by assumption, the trade duration is greater than n which means that, at

the beginning of t = t∗∗, mavet∗∗ must have been greater than log(yt∗∗) because, if it was not,

then based on the Bollinger Band exit rule, the trade would have exited at the end of t = t∗∗.

Therefore mavet∗∗ > log(yt∗∗) at the beginning of t = t∗∗. Also, by Lemma 8, we know that the

total return from the beginning of t = t∗ to the end of t = t∗∗ has to be negative because otherwise

the trade would have exited at the end of t = t∗∗. Therefore, we know that log(yt∗∗) < log(yt∗). So

let us assume that the overall log return from the beginning of t = t∗ up to the end of t = t∗∗ is

−1.0× ǫ1 where ǫ1 > 0. Note that, given the latter assumption, equation (25) in Lemma 3 implies

that log(yt∗)− ǫ1 < mavet∗∗ = log(yt∗)− ǫ2 where ǫ2 < ǫ1 and ǫ1 > 0 and ǫ2 > 0.

Now, since we know that the generated trade has not exited by the end of t = t∗∗, we can suppose

that we are now sitting at the beginning of t = t∗∗ and can define a new time called the shifted time,

tshift, as tshift = t − (t∗∗ − 1) so that the beginning of tshift = 1 corresponds to the beginning of

t = t∗∗. Now, since the trade has not exited at the end of t = t∗∗ and given equation (25) in Lemma 3,

we can modify our perspective by imagining that we are sitting at the beginning of tshift = 1 and

have just entered a new Bollinger Band trade with the entry point equal to the value of log(yt∗∗),

namely log(yt∗)− ǫ1, and the exit point equal to mavet∗∗ , namely log(yt∗)− ǫ2. But, by Lemma 7,

the BBPT strategy is such that no trade in BBPT can ever generate more return than the original

distance between its entry point, log(yt∗∗) − ǫ1, and its initial exit point, mavet∗∗ = log(yt∗) − ǫ2.

Now, at the beginning of tshift = 1, this difference equals (log(yt∗∗)− ǫ2)− (log(yt∗∗ − ǫ1) = ǫ1 − ǫ2.

Therefore, an opened upper bound for the log return of the trade going forward from the beginning of

tshift = 1 is ǫ1−ǫ2. But recall that by assumption, log(yt) has decreased by ǫ1 from the beginning of

t = t∗ up to the end of time t = t∗∗ so the log return of yt during that period is −1.0× ǫ1. Therefore,

by the additivity of log returns, this implies that the maximum possible overall log return of the

trade is < ǫ1 − ǫ2 − ǫ1 = −1.0 ∗ ǫ2. But, from Lemma 3, ǫ2 > 0 so that −1.0 ∗ ǫ2 < 0. But this

means that the trade has to have a negative overall log return which is a contradiction because we
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The If Part Of Theorem One

t* t2 t3 t4 t5 t6 t7 t8 t** − 1 t** t11 t’ t13 t14 t15 t16 t17 t18 t19 t20 t21

log(yt*)

 ε1

 ε2

log(yt*) − ε1

log(yt*) − ε2

 tshift = 1

}

 (ε1 − ε2)

max overall log return =  − ε1 + ( ε1 −  ε2 ) = −  ε2 < 0 contradiction

long trade at  t = t* : n = 10 and trade duration = 12 log(yt)
BBUpper
mave of log(yt)
BBLower
entry price
exit price

Figure 18: Illustrating that a trade with a non-negative log return cannot have a duration greater

than the rolling window size n.

assumed at the outset of the proof that the trade had a non-negative overall log return. Therefore

we have proven the if part of Theorem 1 by contradiction.

We still need to prove the only if part of Theorem 1 which means showing that if the duration of

the trade is less than or equal to the rolling window size, n, then the trade has an overall log return
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that is non-negative. Again, we will prove the only if part of the theorem by contradiction. We

will assume that the pair trade duration is less than or equal to n and that the overall log return

from the beginning of the entry period t∗ to the end of the exit period t = t′ is −1.0 × ǫ where

ǫ > 0 so that the overall log return is negative. Then we will show that these assumptions lead to a

contradiction. Just as was done with the if part of the theorem, in order that one can visualize the

argument that follows, a long trade example is provided in Figure 19 on page 53.

First of all, by assumption, the trade duration is less than or equal to n which means that, given

the Bollinger Band exit rule, there exists some t = t′ <= t∗∗ such that at the end of t = t′,

mavet′ <= log(yt′). Without loss of generality and so that Figure 19 is consistent with the proof,

we will assume that t′ − t∗ = n′ = 4 so that the exit occurs at the end of t = t′ = t∗ + 4.

We need to show that the assumptions above lead to a contradiction. First notice that since the

long trade was entered into at t = t∗, this means that the condition log(yt) > (log(yt∗ − ǫ) ∀t
such that (t∗ − n′ − 1) ≤ t < t∗ should hold26. This condition along with the fact that the

overall log return over the interval is −1.0 × ǫ, allows us to appeal to Lemma 4 which says that

log(yt∗) − ǫ < mavet′ < log(yt∗). But, by definition, since the total log return over the interval

from t = t∗ to t = t′ is −1.0× ǫ, clearly log(yt′) = log(yt∗)− ǫ. Therefore it must be the case that

log(yt′) < mavet′ which means that log(yt) could have not crossed through mavet from below at

t = t′. But if log(yt′) did not cross through mavet from below at t = t′, then this means that there

could not have been an exit at t = t′. Therefore we have arrived at a contradiction which completes

the proof.

Both the if and the only if part of Theorem 1 have been proven so Theorem 1 has been proven. Any

pair trade in the BBPT strategy has a non-negative total return if and only if the duration of the

pair trade is less than or equal to n where n is the rolling window size.

.

26Just as was with the case in Lemma 7, in order to be certain that the condition holds for all n′+1 periods, we

need to assume that a separate long trade was not completed in the time period [(t∗ − n′ − 1), t∗].
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The Only If Part Of Theorem One

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t* t16 t17 t18 t’ t20 t21 t22 t23 t**

 t* + n’ t* − n’ − 1

long trade: n = 10 and n’ = 4

{ ε

     Endpoints of Original Window Are Beginning Of  t = t* And End Of  t = t**

     Assumption is Negative Overall Log Return =  − ε  And Exit At  t = t’

         But Lemma Four says  log(yt) < mave_t  for all t where   t*  <  t  <  t**

 Therefore It Is Not Possible For There To Be An Exit At  t = t’

   But This Is A Contradiction Because We Assumed There Was An Exit At  t = t’

Supposed
Exit Price

Entry Price

Supposed
Exit Time

 log(yt*)

 log(yt*) − ε

yt

mave of yt
original window
signal price

Figure 19: Illustrating that a trade whose duration is less than or equal to the rolling window size

has to have a non-negative overall log return.
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F The BBPT Strategy and the Corresponding FFMDPT

Strategy

Figure 20: The top plot represents the BBPT strategy over 2004 using n = 20 and k = 2 during

2004. The middle and bottom plot illustrate the the FFDBPT strategy over the same time period.

The middle plot excludes the trade line segments for clarity. The purple dots represent BBUpper

and BBLower at the time of entry and the horizontal purple line is the forecast at entry which is

constant for n = 20 periods. The actual trades triggered by the FFMDPT simulation are shown in

the bottom FFMDPT plot with a blue triangle at the end of a line segment indicating that the purple

center line was crossed and the black triangle indicating that the maximum duration occurred. In

the bottom plot, the purple dots at the time of entry are excluded for clarity.
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G BBPT versus FFMDPT: Two Examples

Example One
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Figure 21: A comparison of Bollinger Bands and Fixed Forecast Maximum Duration Bands during

2004 using n = 20 and k = 2. The second and third trades in April and June generate slightly

higher returns in the FFMDPT strategy. Also, the August trade in the BBPT strategy generates a

much larger negative return compared to the corresponding trade in the FFMDPT strategy.
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Example Two
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Figure 22: A comparison of Bollinger Bands and Fixed Forecast Maximum Duration Bands during

2005 using n = 20 and k = 2. The first trade in early February generates a positive return in the

BBPT strategy but a negative return in the FFMDPT strategy. This is because the fixed forecast

in the FFMDPT strategy is never crossed and extra losses are generated before the exit.
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H BBPT Versus FFMDPT Optimized Return Comparison

Table 1: Return Comparison of Bollinger Bands Pairs Trading Simulation and Fixed Forecast Max-

imum Duration Pairs Trading Simulation where k = 1 with n optimized.

BBPT STRATEGY FFMDPT STRATEGY

Year nBBPT RTNBBPT nFFMDPT RTNFFMDPT DIFF

2003-4 13 1.491 11 −1.930 3.4210

2004-5 12 9.738 45 10.390 −0.6529

2005-6 45 4.026 50 5.698 −1.6720

2006-7 14 3.056 13 −2.024 5.0800

2007-8 10 −13.33 20 −3.464 −9.8660

2008-9 40 3.294 24 1.088 2.2060

2009-10 31 −1.406 28 −3.625 2.2190

2010-11 18 −0.7325 10 1.810 −2.5425

Table 2: Return Comparison of Bollinger Bands Pairs Trading Simulation and Fixed Forecast Max-

imum Duration Pairs Trading Simulation where k = 1.5 with n optimized.

BBPT STRATEGY FFMDPT STRATEGY

Year nBBPT RTNBBPT nFFMDPT RTNFFMDPT DIFF

2003-4 13 3.104 12 −3.898 7.002

2004-5 11 10.290 43 3.732 6.558

2005-6 14 10.410 19 9.335 1.075

2006-7 15 5.586 13 0.4854 5.1006

2007-8 12 −4.00 10 −2.331 −1.6690

2008-9 15 −3.154 20 2.735 −5.8890

2009-10 49 −5.018 50 −9.310 4.2920

2010-11 16 0.0075 16 −0.4846 0.4921
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Table 3: Return Comparison of Bollinger Bands Pairs Trading Simulation and Fixed Forecast Max-

imum Duration Pairs Trading Simulation where k = 2 with n optimized.

BBPT STRATEGY FFMDPT STRATEGY

Year nBBPT RTNBBPT nFFMDPT RTNFFMDPT DIFF

2003-4 32 2.162 11 2.989 −0.8270

2004-5 11 4.115 38 2.097 2.0180

2005-6 14 9.534 16 9.301 0.2330

2006-7 14 4.728 15 0.770 3.9576

2007-8 14 4.301 22 1.446 2.8550

2008-9 15 0.548 11 −2.851 3.3988

2009-10 10 8.907 14 7.069 1.8380

2010-11 14 0.802 12 1.456 −0.6542
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