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Abstract

In this paper a financial market model with heterogeneous adaptively learning agents is

developed. The agents can choose between a fundamental forecasting rule and a technical

trading rule. The fundamental forecasting rule predicts that the price returns back to

the fundamental value with a certain speed, whereas the technical trading rule is based

on moving averages. The model in this paper extends the Brock and Hommes (1998)

heterogeneous agents model by adding a moving-average technical trading strategy to

the set of beliefs the agents can choose from, but deviates by assuming constant relative

risk aversion, so that agents choosing the same forecasting rule invest the same fraction

of their wealth in the risky asset. The local dynamical behavior of the model around

the fundamental steady state is studied by varying the values of the model parameters.

A mixture of theoretical and numerical methods is used to analyze the dynamics. In

particular we show that the fundamental steady state may become unstable due to a

Hopf bifurcation. The interaction between fundamentalists and technical traders may

thus cause prices to deviate from their fundamental value. In this heterogeneous world

the fundamental traders are not able to drive the moving average traders out of the market,

but fundamentalists and technical analysts coexist forever with their relative importance

changing over time.
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1 Introduction

An important question in heterogeneous agents modeling is whether irrational traders

can survive in the market, or whether they would lose money and are driven out of the

market by rational investors, who would trade against them and drive prices back to

fundamentals, as argued by e.g. Friedman (1953). In the last decade a number of the-

oretical and/or computational heterogeneous agent models, with fundamentalist traders

competing against technical analysts, have been developed, see e.g. in Frankel and Froot

(1988), De Long et al. (1989, 1990), Kirman (1991), Wang (1994), Lux (1995), Arthur

et al. (1997), Brock and Hommes (1997, 1998), Farmer (1998), Hong and Stein (1999)

and LeBaron et al. (1999). A common feature of these contributions is that technical

traders may at times earn positive profits, survive evolutionary competition and need not

be driven out of the market by trading strategies based upon economic fundamentals.

Brock and Hommes (1998) investigate the dynamical behavior of a simple finan-

cial market model with heterogeneous adaptively learning traders, where the fraction of

traders following a certain forecasting rule changes over time. The traders are restricted

to choose from a finite set of fundamental and trend following trading techniques. How

many traders are using a particular technique in predicting prices depends on the past

performances of these techniques, as measured by past profits or forecasting accuracy.

Emphasis is placed on the change in dynamical behavior when the intensity of choice pa-

rameter, measuring how quickly agents switch between forecasting techniques, is varied.

It is found that increasing this intensity of choice can lead to market instability and the

emergence of complicated dynamics for asset prices and returns, with irregular switching

between phases where prices are near to the fundamental value and phases of optimism

where traders extrapolate trends. An extremely rich asset price dynamics emerges, with

bifurcation routes to strange attractors, especially if switching to more successful strate-

gies becomes more rapid. It is also found that even when costs of information gathering

and trading are zero, then fundamentalists are in general not able to drive other trader

types out of the market. Thus it is concluded that simple technical trading rules may sur-

vive evolutionary competition in a heterogeneous world where prices and beliefs coevolve

over time and that therefore the Friedman argument should be considered with care. See

e.g. Hommes (2001) for a survey and an extensive discussion of these points.

One of the goals of heterogeneous agents modeling is to develop simple financial asset

pricing models that mimic the well-known characteristics of real financial return distri-

butions, such as little autocorrelation in the returns, volatility clustering and fat tails.

Gaunersdorfer and Hommes (2000) develop a model in which volatility clustering be-
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comes an endogenous phenomenon by the interaction of heterogeneous agents. Volatility

clustering is caused by the coexistence of attractors, a stable fundamental steady state

and a stable (quasi) periodic cycle. The time series properties of the model are compared

with the daily closing prices of the S&P 500 in the period August 1961 through May

2000 and furthermore a GARCH model is estimated. It is concluded that the model

approximates reality fairly well.

This paper is an extension of the Brock and Hommes (1998) model in that it adds

a real moving-average technical trading strategy to the set of beliefs the traders can

choose from. Moving averages are well known and frequently used prediction rules in

financial practice. They are intended to smooth out an otherwise volatile time series

and to show its underlying directional trend (For an empirical study of technical trading

see e.g. Griffioen (2003)). Furthermore, the model proposed in this paper assumes that

traders have constant relative risk aversion. That is, every trader in a given belief group

invests the same proportion of his individual wealth in the risky asset. Hence, traders

take the same amount of risk relative to their wealth. In the Brock and Hommes (1998)

model, in contrast, it is assumed that the traders have constant absolute risk aversion.

Irrespective of their individual wealth every trader in a certain belief group will buy or

sell short the same amount of stocks. Thus traders with less wealth are prepared to take

greater relative risks than traders with more wealth. It should be noted that in the case

of zero supply of outside stocks, the model developed in this paper reduces to the Brock

and Hommes (1998) model.

In nonlinear dynamical models it is in general impossible to obtain explicit analytic

expressions for the periodic and chaotic solutions. Therefore in applied nonlinear dynam-

ics it is common practice to use a mixture of theoretical and numerical methods to analyze

the dynamics. We perform a bifurcation analysis of the steady state by using numerical

tools, such as delay and phase diagrams, bifurcation diagrams and the computation of

Lyapunov exponents. In particular we show analytically that the fundamental steady

state may become unstable due to a Hopf bifurcation.

In section 2 the Brock and Hommes (1998) financial market model with adaptively

learning agents is reviewed. Thereafter, in section 3, the heterogeneous agents model with

fundamentalists versus moving average traders, resulting in an eight dimensional nonlinear

dynamical system, is derived. In section 4 a procedure is developed to determine trading

volume. Section 5 presents an analytical stability analysis of the fundamental steady

state. The eigenvalues of the linearized system are computed and it is examined which

kind of bifurcations can occur. In section 6 numerical simulations are used to study the

dynamical behavior of the model, especially when the steady state is locally unstable.
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Finally section 7 summarizes and concludes.

2 The Brock-Hommes heterogeneous agents model

In this section we discuss the discounted value asset pricing model with heterogeneous

beliefs of Brock and Hommes (1998)1. Consider a market with N agents who can select

independently from each other a strategy h from a finite set of H different beliefs or

forecasting rules to base trading decisions upon. Agents have to make a capital allocation

decision between a risky asset P and a risk free asset F . There are no restrictions on the

amount of money which can be borrowed or lend and there are also no restrictions on

the number of shares that can be bought or sold short. Agent j can choose to buy or sell

short zj,t shares of the risky asset at time t. The wealth of agent j at time t + 1 is then

equal to

Wj,t+1 = RWj,t + zj,t(Pt+1 + Dt+1 − RPt), (1)

where R = (1 + rF ) is the risk free gross return, rF is the risk free net return assumed to

be constant, Pt is the equilibrium price of the risky asset at time t and Dt is the dividend

paid at time t. The term (Pt+1 + Dt+1 − RPt) is equal to the excess profit of one long

position in the risky asset.

BH make the following assumptions regarding the trading process. All agents are price

takers. That is, an agent cannot influence the market’s equilibrium price by his individual

investment decision. The demand for the risky asset zj,t is a continuous monotonically

decreasing function of the price Pt at time t. Further, the model follows a Walrasian

equilibrium price scenario. Before the setting of the equilibrium price at time t, each

agent j chooses a trading strategy h and makes an optimal investment decision zh
j,t in the

time interval (t − 1, t). Expectations about future prices and dividends are made on the

basis of the information set of past equilibrium prices and dividends {Pt−i, Dt−i : i ≥ 1}
(note that Pt and Dt are not included). Through the market mechanism an equilibrium

price is set so that the market clears. Dividends Dt paid at time t can immediately be

reinvested at time t.

Demand

BH define the information set It = {Pt−i, Dt−i : i ≥ 1}∪{Pt, Dt}, where {Pt−i : i ≥ 1} are

past equilibrium prices, {Dt−i : i ≥ 1} are past dividends, {Dt} is current dividend, but

where {Pt} is not yet necessarily the equilibrium price. The conditional expected wealth

1Henceforth abbreviated as BH.
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of agent j at time t who invests according to strategy h is then equal to

Eh
j (Wj,t+1|It) = Eh

j,t(Wj,t+1) = RWj,t + zh
j,tE

h
t (Pt+1 + Dt+1 − RPt), (2)

where Eh
t (Pt+1 + Dt+1 − RPt) is the forecast strategy h makes about the excess profit of

the risky asset at time t+1 conditioned on It. The agent also makes a forecast about the

dispersion of his expected wealth conditioned on It

V h
j (Wj,t+1|It) = V h

j,t(Wj,t+1) = (zh
j,t)

2V h
t (Pt+1 + Dt+1), (3)

where V h
t (Pt+1 + Dt+1) is the forecast of belief h about the dispersion of expected price

plus dividend. It is assumed that if the conditional expected excess profit of belief h is

positive, then the agent holds a long position in the market (zh
j,t ≥ 0) and if the conditional

expected excess profit is strictly negative, then the agent holds a short position in the

market (zh
j,t < 0), so that conditional expected wealth is always equal or larger than RWj,t.

Solving the conditional variance equation (3) for zh
j,t yields

zh
j,t = ±

√
V h

j,t(Wj,t+1)

V h
t (Pt+1 + Dt+1)

, (4)

where the ± sign depends on the sign of the expected excess profit on the risky asset

by belief h. The capital allocation line (CAL) of agent j with belief h is derived by

substituting (4) in the conditional expectations equation (2) which yields

Eh
j,t(Wj,t+1) = RWj,t + Sh

t

√
V h

j,t(Wj,t+1) if Eh
t (Pt+1 + Dt+1 − RPt) ≥ 0; (5)

Eh
j,t(Wj,t+1) = RWj,t − Sh

t

√
V h

j,t(Wj,t+1) if Eh
t (Pt+1 + Dt+1 − RPt) < 0; (6)

Sh
t =

Eh
t (Pt+1 + Dt+1 − RPt)√

V h
t (Pt+1 + Dt+1)

=
Eh

t (Pt+1 + Dt+1 − RPt)/Pt√
V h

t (Pt+1 + Dt+1)/P 2
t

=
Eh

t (rP
t+1 − rf )√

V h
t (rP

t+1)
.

Here rP
t+1 is the return of the risky asset at time t+1 and |Sh

t | is the reward to variability

ratio, or stated differently, the extra expected return to be gained per extra point of

expected risk to be taken. The CAL shows the relation between the expected wealth

and the expected dispersion of the wealth by agent j. The CAL is always an increasing

function of
√

V h
j,t(Wj,t+1), which means that the more risk the agent expects to take, the

more he expects to earn.
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BH assume that each agent has constant absolute risk aversion (CARA) and that the

utility of the asset allocation decision of agent j who invests according to belief h at time

t is given by

Uh
j,t = Eh

j,t(Wj,t+1) −
aj

2
V h

j,t(Wj,t+1), (7)

where aj is the risk aversion parameter of agent j. Every agent chooses an asset allocation

that maximizes his utility, that is

Maxzh
j,t

Eh
j,t(Wj,t+1) −

aj

2
V h

j,t(Wj,t+1) under the CAL (5) or (6). (8)

This maximization yields the optimal choice of the number of stocks to be bought or sold

short

zh
j,t(Pt) =

Eh
t (Pt+1 + Dt+1 − RPt)

ajV h
t (Pt+1 + Dt+1)

, (9)

where zh
j,t(Pt) ∈ IR is the demand for shares as a continuous monotonically decreasing

function of Pt. If zh
j,t > 0, then a long position in the market is taken and if zh

j,t < 0, then

a short position in the market is taken. If it is assumed that all agents have the same risk

aversion parameter aj = a, then all agents with the same belief buy or sell short the same

number of shares irrespective of their wealth. If j ∈ belief h, then zj,t = zh
j,t = zh

t , where

zh
t is the number of shares recommended to be bought or sold short by belief h at time t.

Market equilibrium

Equilibrium of demand and supply yields

N∑

j=1

zj,t =
H∑

h=1


 ∑

{j ∈ belief h}

zh
j,t


 = S, (10)

where S is the total number of shares available in the market. Hence in equilibrium the

total number of shares demanded by the agents should be equal to the total number of

shares available. Equilibrium equation (10) can be rewritten as

H∑

h=1

Nh
t zh

t = S, (11)

where Nh
t is the number of agents having belief h at time t. If both sides of equation (11)

are divided by the total number of agents N trading in the market, then

H∑

h=1

nh
t z

h
t = s, (12)
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where nh
t = Nh

t /N is the fraction of agents with belief h and s = S/N is the number of

shares available per agent.

Further, BH assume that the conditional variance V h
t (Pt+1 + Dt+1) = σ2 is constant

through time and equal for all beliefs. This assumption of homogeneous, constant beliefs

on variance is made primarily for analytical tractability. Notice however that heterogene-

ity in conditional expectations in fact leads to heterogeneity in conditional variance as

well, but this second-order effect will be ignored. Equilibrium equation (12) can be solved

for Pt to yield the equilibrium price

Pt =
1

R

H∑

h=1

{
nh

t E
h
t (Pt+1 + Dt+1)

}
− 1

R
aσ2s. (13)

If the number of outside shares per trader is zero, i.e. if s = 0, then the equilibrium price

at time t is equal to the net present value of the average expected price plus dividends at

time t + 1.

Evolutionary dynamics

The fraction of agents who choose to invest according to belief or forecasting rule h are

determined by a discrete choice model. Every agent chooses the belief with the highest

fitness he observes. Individually observed fitness is derived from a random utility model

and given by:

F̃ h
j,t = F h

j,t + εh
j,t, (14)

where F h
j,t is the deterministic part of the fitness measure and εh

j,t represents personal

observational noise. If εh
j,t 6= 0, then this model means that agent j cannot observe the

true fitness F h
j,t of belief h perfectly, but only with some observational noise. Assuming

that the noise εh
j,t is iid drawn across beliefs h = 1, ..., H and across agents j = 1, ..., N

from a double exponential distribution, then the probability that agent j chooses belief h

is equal to

qh
j,t =

exp(βjF
h
j,t−1)∑H

k=1 exp(βjF
k
j,t−1)

. (15)

Here βj is called the intensity of choice, measuring how sensitive agent j is to selecting

the optimal belief. The intensity of choice βj is inversely related to the variance of the

noise terms εh
j,t. If agent j can perfectly observe the fitness of each belief in each period,

then V (εh
j,t) ↓ 0 and βj → ∞ and the agent chooses the best belief with probability 1. If

agent j cannot observe differences in fitness, then V (εh
j,t) → ∞ and βj ↓ 0 and the agent

chooses each belief with equal probability 1/H.
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The excess profit of an agent following strategy h in period t is equal to (Pt + Dt −
RPt−1) zh

t−1. Therefore the fitness measure of strategy type h as observed by agent j is

defined as

F h
j,t = (Pt + Dt − RPt−1)z

h
t−1 − Ch

j + ηjF
h
j,t−1.

Here 0 ≤ ηj ≤ 1 is the personal memory parameter and Ch
j is the average per period cost

of obtaining forecasting strategy h for agent j. If ηj = 1, the memory of the agent is

infinite and F h
j,t is equal to the cumulative excess profits of belief h until time t. In this

case F h
j,t measures the total excess profit of the belief from the beginning of the process.

If ηj = 0, the agent has no memory and F h
j,t is equal to the excess profit on time t − 1.

If 0 < ηj < 1, then F h
j,t is a weighted average of past excess profits with exponentially

declining weights. The higher the costs Ch
j , the more costly it is for the agent to obtain

and invest according to belief h, and the more unlikely it will be that the agent chooses

belief h.

BH assume that βj = β, ηj = η and Ch
j = Ch for all agents, so that F h

j,t = F h
t and

qh
j,t = qh

t are equal for all agents. This means that all agents have the same intensity of

choice, have the same memory and face the same costs for trading. Under this assumption,

in the limit, as the number of agents goes to infinity, the fraction of agents who choose to

invest according to belief h converges in probability to qh
t . Thus in the equilibrium price

equation (13) nh
t can be replaced by qh

t . Furthermore, it is assumed that all agents have

the same risk aversion parameter aj = a, so that agents who follow the same forecasting

rule have the same demand. Hence, in the end, in the heterogeneous agents model of

Brock and Hommes (1998), the agents are only heterogeneous in the beliefs they can

choose from.

3 A modified heterogeneous agents

asset pricing model

3.1 Utility-maximizing beliefs

As in the BH model we consider a market with N agents who can select independently

from each other a strategy h from a finite set of H different beliefs or forecasting rules to

base trading decisions upon. Agents have to make a capital allocation decision between a

risky asset P and a risk free asset F . Agent j can choose to invest at time t a fraction yj,t

of his wealth Wj,t in the risky asset P and a fraction 1 − yj,t in the risk free asset F . If

Pt is the price of the risky asset at time t and Dt is the dividend paid at time t, then the
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net return of the risky asset at time t + 1 is defined as rP
t+1 = (Pt+1 + Dt+1 − Pt)/Pt and

the net risk free return is denoted by rF and is assumed to be constant. The net return

of the agent’s j complete portfolio C at time t + 1 is then equal to

rc
j,t+1 = (1 − yj,t)r

F + yj,tr
P
t+1 = rF + yj,t(r

P
t+1 − rF ),

where rP
t+1−rF is the excess return on the risky asset. In this section we derive the demand

function for the risky asset if the agent has constant relative risk aversion and determines

his optimal demand for the risky asset by maximizing his mean-variance utility curve on

his capital allocation line. The demand function is derived under the assumption that the

agent makes price predictions. In subsection 3.2 we present the demand function for the

risky asset if the agent does not make price predictions, but only chooses to buy or sell

short the asset on the basis of a technical trading strategy.

We make the following assumptions regarding the trading process. All agents are

price takers. That is, an agent cannot influence the market’s equilibrium price by his

individual investment decision. Further, the model follows a Walrasian equilibrium price

scenario. Each agent j chooses a strategy h and makes an optimal investment decision

yh
j,t in the time interval (t − 1, t), before the setting of the equilibrium price at time t.

Expectations about future prices and dividends are made on the basis of the information

set of past equilibrium prices and dividends {Pt−i, Dt−i : i ≥ 1} (note that Pt and Dt

are not included). Through the market mechanism an equilibrium price is set so that the

market clears. Dividends Dt paid at time t can immediately be reinvested at time t.

We define the information set It = {Pt−i, Dt−i : i ≥ 1}∪{Pt, Dt}, where {Pt−i : i ≥ 1}
are past equilibrium prices, {Dt−i : i ≥ 1} are past dividends, {Dt} is current dividend,

but where {Pt} is not yet necessarily the equilibrium price. The conditional expected

portfolio return of agent j at time t who invests according to strategy h is then equal to

Eh
j (rc

j,t+1|It) = Eh
j,t(r

c
j,t+1) = rF + yh

j,tE
h
t (rP

t+1 − rF ), (16)

where Eh
t (rP

t+1 − rF ) is the forecast belief h makes about the excess return of the risky

asset at time t + 1 conditioned on It. If the conditional expected excess return of belief

h is positive, then the fraction invested in the risky asset is positive (yh
j,t ≥ 0) and if the

conditional expected excess return is strictly negative, then the fraction invested in the

risky asset is strictly negative (yh
j,t < 0). Hence agent j with belief h can choose to buy

shares or to sell shares short. Agent j does not only forecast his portfolio return but also

the dispersion of the portfolio return which is equal to

V h
j (rc

j,t+1|It) = V h
j,t(r

c
j,t+1) = (yh

j,t)
2V h

t (rP
t+1), (17)
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where V h
t (rP

t+1) is the forecast of belief h about the dispersion of the excess return of the

risky asset. Solving (17) for yh
j,t yields

yh
j,t = ±

√
V h

j,t(r
c
t+1)

V h
t (rP

t+1)
if V h

t (rP
t+1) > 0, (18)

where the ± sign depends on the conditional expected excess return of the risky asset.

The capital allocation line (CAL) can be derived by substituting (18) in the conditional

expectations equation (16), that is

Eh
j,t(r

c
j,t+1) = rF + Sh

t

√
V h

j,t(r
c
j,t+1) if Eh

t (rP
t+1 − rF ) ≥ 0; (19)

Eh
j,t(r

c
j,t+1) = rF − Sh

t

√
V h

j,t(r
c
j,t+1) if Eh

t (rP
t+1 − rF ) < 0; (20)

Sh
t =

Eh
t (rP

t+1 − rF )√
V h

t (rP
t+1)

.

Here |Sh
t | is the reward to variability ratio, or stated differently, the extra expected return

to be gained per extra point of expected risk to be taken. The CAL shows the relation

between the expected return and the expected dispersion of the return. The CAL is

always an increasing function of
√

V h
j,t(r

c
j,t+1). This implies that the more risk the agent

expects to take, the more he expects to earn.

We assume that the agents have a constant relative risk aversion so that the utility of

the capital allocation decision by agent j with belief h is given by

Uh
j,t = Eh

j,t(r
c
j,t+1) −

aj

2
V h

j,t+1(r
c
j,t), (21)

where aj is the risk aversion parameter of agent j. Every agent chooses an asset allocation

that maximizes his utility

Maxyh
j,t

Eh
j,t(r

c
j,t+1) −

aj

2
V h

j,t(r
c
j,t+1) under CAL (19) or (20). (22)

The first order condition of (22) is

dUh
j,t

dyh
j,t

= Eh
t (rP

t+1 − rF ) − ajy
h
j,tV

h
t (rP

t+1) = 0.

This implies that the optimal fraction of individual wealth invested in the risky asset by

agent j with belief h as function of the price Pt is equal to

yh
j,t(Pt) =

Eh
t (rP

t+1 − rF )

ajV h
t (rP

t+1)
. (23)
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Since the second order condition

d2Uh
j,t

d(yh
j,t)

2
= −ajV

h
t (rP

t+1) < 0

is satisfied, utility is maximized. If yh
j,t > 0, then a long position in the risky asset is held.

If yh
j,t < 0, then a short position in the risky asset is held. If we assume that all agents

have the same risk aversion parameter aj = a, then all agents with the same belief h

invest the same fraction of their individual wealth in the risky asset. If agent j has belief

h, then yj,t = yh
j,t = yh

t , where yh
t is the optimal fraction of wealth invested in the risky

asset at time t recommended by belief h. Under the assumption that aj = a it is also true

that Uh
j,t = Uh

t for all j. Further we assume that the conditional variance V h
t (rP

t+1) = σ2

is constant through time and equal for all beliefs. yh
t (Pt) can now be rewritten as:

yh
t (Pt) =

1
Pt

Eh
t (Pt+1 + Dt+1) − R

aσ2
, (24)

which is a convex monotonically decreasing function of Pt. Note that we can bring Pt

outside the expectations formula, because the price is not a random variable, but an

equilibrium price set by the market auctioneer. Stated differently, the fraction of wealth

invested in the risky asset at time t depends on the price set by the market at time t and

the forecast or belief about the price at time t+1, based on all available information until

time t but not including Pt. Figure 1 illustrates the demand function of the mean-variance

utility maximizing belief.
yh

t

0

−R

aσ2

1
R
Eh

t (Pt+1 + Dt+1) Pt

Figure 1: Demand function of the mean-variance utility maximizing belief

3.2 Non-utility-maximizing beliefs: technical traders

In subsection 3.1 we have derived the demand function for the risky asset under the

assumptions that agents make price predictions and maximize a constant relative risk
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aversion utility function on a capital allocation line. However, if investors use technical

trading rules, then they often do not try to make a point forecast of the price directly,

but they make an investment decision based on the direction of a trend in prices. Pring

(1992) defines technical analysis as the art of detecting a price trend in an early stage

and maintaining a market position until there is enough weight of evidence that the trend

has reversed. Thus, if we want to model technical traders, then we must define a demand

function for the risky asset in another way as we did in section 3.1.

We take as an example the exponential moving-average trading rule. The advantage

of this rule over the usual equally weighted moving-average trading rule is that it keeps

the dimension of our model low. Demand functions for other technical trading rules can

be derived according to the same concept. The exponential moving average at time t is

equal to

MAt = µPt + (1 − µ)MAt−1 = µ
t−1∑

j=0

(1 − µ)jPt−j + (1 − µ)tMA0, (25)

where 0 < µ < 1. In this formula more recent prices get a higher weight than prices

further into the past. The advantage of moving-average rules is that they follow the

trend, are easy to compute and smooth an otherwise volatile series. The smaller µ, the

more the moving average smoothes the price series, or stated differently, the more the

moving average follows the price series at a distance. A small µ places little weight on

current price and can be used to detect long term trends, while a large µ places large

weight on current price and can be used to detect short term trends.

Trading signals are generated by the crossing of the price through the moving average.

If the price crosses the moving average upwards, i.e. Pt > MAt ∧ Pt−1 ≤ MAt−1, then a

buy signal is generated and at time t+1 a long position in the market is taken. If the price

crosses the moving average downwards, i.e. Pt < MAt ∧Pt−1 ≥ MAt−1, then a sell signal

is generated and at time t + 1 a short position in the market is taken. The magnitude of

the position held in the market can also be conditioned on the distance between the price

and the moving average. If Pt is close to MAt, small positions should be held, because it

is uncertain whether the strategy generated correct signals. It also seems reasonable to

assume that if Pt is very far away from MAt, then small positions should be held, because

the price exploded too fast away from MAt.

To satisfy above conditions the demand of the moving average forecasting rule, as a

fraction of individual wealth at time t, yMA
t , is defined as a continuous function of past
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prices and moving averages in the following way:

xt−1 =
1

λ(1 − µ)

Pt−1 − MAt−1

MAt−2

=
1

λ

Pt−1 − MAt−2

MAt−2

;

yMA
t = f(xt−1) = 2γ

xt−1

1 + x2
t−1

,

(26)

where λ > 0, γ > 0. Notice that in contrast to the fraction yh
t (Pt) in (24), the fraction

yMA
t of wealth invested by moving average traders in the risky asset does not depend upon

the (unknown) market equilibrium price Pt, but only upon past price observations and

moving averages.

The demand function (26) has the following properties (see figure 2 for illustration):

• yMA
t < 0 if Pt−1 < MAt−1

• yMA
t = 0 if Pt−1 = MAt−1

• yMA
t > 0 if Pt−1 > MAt−1

• lim
Pt−1→∞

yMA
t = 0

• lim
Pt−1↓0

yMA
t = −2γ

λ

1 + λ2

• dyMA
t

dPt−1
= 2γ

(
1

λMAt−2

)
1 − x2

(1 + x2)2

• minimum: (Pt−1, y
MA
t ) = ((1 − λ)MAt−2, −γ)

• maximum: (Pt−1, y
MA
t ) = ((1 + λ)MAt−2, γ)

The parameter γ controls for the maximum and minimum fraction of wealth the technical

trader can invest in the risky asset. The parameter λ controls for the location of the

extrema. Within some band around the moving average, which depends on the value of

λ, yMA
t increases (or decreases) to a maximum (or minimum) value γ (or -γ). Outside this

band the further away price deviates from the moving average, the more yMA
t decreases

in absolute value.

3.3 Market equilibrium

Wealth per agent, total wealth and market clearing

The number of shares agent j who follows belief h holds in the risky asset at time t

depends on his individual wealth and the equilibrium price, that is

zh
j,t =

yh
t Wj,t

Pt
. (27)
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yMA
t

γ

0

−γ

(1 − λ)MAt−2 MAt−2 (1 + λ)MAt−2

Pt−1

Figure 2: Demand function exponential moving average belief

Here Wj,t is the wealth of agent j at time t, which depends on the fraction of the wealth

invested at time t − 1, that is

Wj,t =
(
1 + rF + yj,t−1(r

P
t − rF )

)
Wj,t−1 =

(
1 + rF + yj,t−1

(
Pt + Dt

Pt−1

− (1 + rF )

))
Wj,t−1 =

RWj,t−1 + (Pt + Dt − RPt−1)
yj,t−1Wj,t−1

Pt−1

=

RWj,t−1 + (Pt + Dt − RPt−1) zj,t−1.

(28)

The total wealth of all N agents at time t is equal to

Wt =
∑N

j=1 Wj,t =

R
∑N

j=1 Wj,t−1 + (Pt + Dt − RPt−1)
∑N

j=1 zj,t−1 =

RWt−1 + (Pt + Dt − RPt−1)s =

R(Wt−1 − sPt−1) + sDt + sPt,

(29)

where s is the total number of shares available to trade. R(Wt−1 − sPt−1) + sDt is the

total amount of money invested in the risk free asset and sPt is the total amount of money

invested in the risky asset by all agents at time t. If the total initial market wealth is

equal to W0, then the total wealth at time t is equal to

Wt = Rt(W0 − sP0) + s
∑t−1

i=0(R
iDt−i) + sPt =

(W0 − sP0) +
∑t−1

i=0

(
Ri(rF (W0 − sP0) + sDt−i)

)
+ sPt.

(30)
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Naturally Dt ≥ 0 at each date. Suppose that W0 = M + sP0, then the total amount

of money invested in the risk free asset, Wt − sPt, at time t is greater than or equal to

zero for t = 0, ..., T , if the initial amount of money invested in the risk free asset, M , is

positive. We assume throughout this paper that M ≥ 0.

We assume that at time t each of the N agents hands over his demand function (27)

for the risky asset to a market auctioneer. The auctioneer collects the demand functions

and computes the final equilibrium price Pt so that the market clears. Equilibrium of

demand and supply so that the market clears yields

N∑

j=1

zj,t =
H∑

h=1


 ∑

j ∈ belief h

zh
j,t


 = s. (31)

By substituting (27) in (31) the equilibrium equation (31) can be rewritten as

H∑

h=1


 ∑

j ∈ belief h

yh
t Wj,t

Pt


 =

H∑

h=1


yh

t

Pt

∑

j ∈ belief h

Wj,t


 =

H∑

h=1

(
yh

t W h
t

Pt

)
= s,

or equivalently
H∑

h=1

(
yh

t W h
t

)
= sPt.

(32)

Here W h
t is the total wealth of all agents who use forecasting rule h at time t. Recall

that the demand yh
t is a function of Pt. To solve the equilibrium equation (32) for Pt,

we first have to determine how much wealth is assigned to each belief, W h
t , by all agents.

In Appendix B we show that under the assumption that at date t = 0 wealth is equally

divided among agents and under the assumption that each agent has zero market power

at each date, it is true that the fraction of total wealth invested according to belief h at

time t converges in probability to the probability that an agent chooses belief h, that is

W h
t

Wt

p→ qh
t . (33)

Notice that we use slightly different choice probabilities as in (15) by introducing a lower

bound on the probabilities as motivated by Westerhoff (2002); see Appendix B for details.

The heterogeneous agents model equilibrium equation

Now that we have shown that the fraction of total market wealth invested according to a

certain belief converges in probability to the probability that the belief is chosen, we can

solve equation (32) for Pt to get the equilibrium price. Equilibrium equation (32) can be

rewritten as
H∑

h=1

(
yh

t
W h

t

Wt
Wt

Pt

)
p→

H∑

h=1

(
yh

t qh
t Wt

Pt

)
= s,
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or equivalently
H∑

h=1

yh
t qh

t =
sPt

Wt
. (34)

The left hand side of equation (34) is the demand for the risky asset as a fraction of total

wealth, while the right hand side is the worth of the supply of shares as a fraction of the

total wealth. Using (29) the right hand side can be rewritten to

S(Pt) =
Pt

R
(

Wt−1

s
− Pt−1

)
+ Dt + Pt

.

The first and second derivative of the supply function S(Pt) are equal to

dS(Pt)

dPt

=
c

(c + Pt)2
;

d2S(Pt)

dP 2
t

=
−2c(c + Pt)

(c + Pt)4
,

where c = R
(

Wt−1

s
− Pt−1

)
+Dt is the amount of money invested in the risk free asset per

risky share. We assume that c > 0 (see also equation (30)). Thus for Pt ≥ 0 the supply

function is a continuous monotonically increasing and concave function of Pt which starts

at 0 and converges to 1 as Pt goes to infinity. Notice that this equals the total fraction of

wealth invested in the risky asset, which means that the market as a whole never borrows

from an outside supplier of money, but that borrowing and lending occurs within the

market.

Recall that for the utility maximizing agents the demand as a fraction of individual

wealth, yh
t , in (24) is a decreasing function of Pt. For the non utility maximizing agents

yh
t does not depend on Pt, but only on past prices. Hence the left hand side of equilibrium

equation (34) is a decreasing function of Pt. Although the right hand side of (34) is an

increasing function of Pt, some additional restrictions for the demand of the non utility

maximizing agents must hold for a unique positive equilibrium price to exist. This will

be shown in the next section.

The equilibrium price

We split the set of beliefs or forecasting rules the agents can choose from in a set B1

of utility maximizing beliefs based upon price predictions and the set B2 of non utility

maximizing beliefs, not using price predictions but technical trading strategies. Equation

(34) can then be rewritten as

∑

h∈B1

qh
t yh

t +
∑

h∈B2

qh
t yh

t =
sPt

Wt
. (35)
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If the supply of outside shares is equal to zero, i.e. s = 0, then substituting (24) in

(35) to solve for Pt yields

Pt =
1

R − aσ2

∑
h∈B2

qh
t yh

t∑
h∈B1

qh
t

∑

h∈B1

qh
t∑

h∈B1
qh
t

Eh
t (Pt+1 + Dt+1). (36)

Several assumptions have to be made for the equilibrium price to exist. First we have to

assume that there is a belief h ∈ B1 for which qh
t > 0. If for all beliefs h ∈ B1: qh

t = 0,

then there is no solution for Pt. Further, for the equilibrium equation to be solvable for

Pt an upperbound has to be posed on the fraction of total market wealth the technical

traders in B2 can go long in the risky asset. If s = 0, then according to equilibrium

equation (35) the fraction of total market wealth traders in belief group B2 go long is

equal to the fraction of total market wealth traders in belief group B1 go short, that is

∑

h∈B2

qh
t yh

t = −
∑

h∈B1

qh
t yh

t .

Because of the characteristics of the demand function (24) for the risky asset, traders in

belief group B1 are restricted in the fraction of individual wealth they can go short, that

is

− R

aσ2
< yh

t < ∞.

This implies that there is an upperbound on the fraction of total wealth traders in belief

group B2 can go long, that is

∑

h∈B2

qh
t yh

t = −
∑

h∈B1

qh
t yh

t <
R

aσ2

∑

h∈B1

qh
t .

This restriction implies that the denominator of the ratio in the first part of the right

hand side of (36) is positive. There is a positive equilibrium price in the case of zero

supply of outside stocks, because price and dividend expectations are restricted to be

always positive. If B2 = ∅, then
∑

h∈B2
(qh

t yh
t ) = 0 and the equilibrium price is equal to

the net present value of the average of the expected price plus dividend by the traders in

belief group B1. This is the same solution for the equilibrium price as in the BH model.

For s = 0 as in the BH model, wealth plays no role anymore. For every short position

there must be an offsetting long position. If the gross risk free rate under borrowing and

lending is always equal to R, then wealth at time t is just equal to Wt = RWt−1.

The derivation of the equilibrium price for a strictly positive supply of outside shares,

i.e. if s > 0, is presented in Appendix C.
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The EMH benchmark with rational agents

In a world where all agents are identical, expectations are homogeneous and all traders

are risk neutral, i.e. a ↓ 0, equilibrium equation (36) in the case of s = 0 and equilibrium

equation (61) in the case of s > 0 both reduce to

Pt =
1

R
Et(Pt+1 + Dt+1). (37)

This arbitrage market equilibrium equation states that today’s price of the risky asset must

be equal to the sum of tomorrow’s expected price and expected dividend, discounted by

the risk-free interest rate. The arbitrage equation (37) can be used recursively to derive

the price at time t

Pt =
Et(Pt+k)

Rk
+

k∑

j=1

Et(Dt+j)

Rj
. (38)

If the transversality condition

lim
k→∞

Et(Pt+k)

Rk
= 0,

holds, which means that the long run growth rate of price is less than the discount rate

rf , then the price is equal to the net present value of all future dividends

P ∗
t = lim

k→∞

k∑

j=1

Et(Dt+j)

Rj
.

This price is called the efficient markets hypothesis (EMH) fundamental rational expec-

tations price, or fundamental price for short.

We will focus on the case where for all beliefs h expectations on dividend are equal:

Eh
t (Dt+1) = Et(Dt+1) and where the dividend process is iid with mean D. The funda-

mental price is then constant and equal to

P ∗ =
D

r
.

3.4 A heterogeneous agents model with fundamentalists

versus moving average traders

Utility maximizing belief: the fundamental trader

Fundamentalists expect that prices return to the fundamental value with speed v, that is

Efund
t (Pt+1) = P ∗ + v(Pt−1 − P ∗), 0 ≤ v ≤ 1.
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If v = 1, then the fundamental traders make naive price expectations and if v = 0, then

the fundamental traders expect the price to be always equal to the fundamental value.

The fraction of individual wealth invested in the risky asset is then equal to

yfund
t (Pt) =

1
Pt

Et(Pt+1 + Dt+1) − R

aσ2
=

1
Pt

(P ∗ + v(Pt−1 − P ∗) + D) − R

aσ2
,

where a > 0, σ2 > 0 and R = 1 + rf > 1.

Non utility maximizing belief: the exponential moving average trader

Moving average traders buy (sell) if the price crosses the moving average from below

(above). We use the exponential moving average MAt = µPt + (1− µ)MAt−1, where the

exponential smoothing constant 0 < µ < 1. The fraction of individual wealth invested in

the risky asset is then equal to

yma
t = 2γ

xt+1

1 + x2
t+1

, where xt+1 =
1

λ

Pt−1 − MAt−2

MAt−2

, γ > 0 and λ > 0.

3.5 The dynamical system

Using equations (36), (25) and (52) and setting M̂At = MAt−1 and F̂ h
t = F h

t−1 the

following dynamical system for s = 0 is obtained

Pt(Pt−1, M̂At−1, F̂
fund
t , F̂ma

t );

M̂At = µPt−1 + (1 − µ)M̂At−1;

F̂ h
t = rF + yh

t−2(r
P
t−1 − rF ) + ηF̂ h

t−1, for h = (fund,ma).

Introducing new variables Pi,t−1 = Pt−i and M̂Ai,t−1 = M̂At−i the following eight dimen-

sional dynamical system is derived from the above equations

P1,t =
qfund
t

qfund
t R − aσ2qMA

t yMA
t

(P ∗ + v(P1,t−1 − P ∗) + D);

P2,t = P1,t−1;

P3,t = P1,t−2 = P2,t−1;

M̂A1,t = µP1,t−1 + (1 − µ)M̂A1,t−1;

M̂A2,t = M̂A1,t−1;

M̂A3,t = M̂A1,t−2 = M̂A2,t−1;
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F̂ fund
t = rF + yfund

t−2 (
P1,t−1 + Dt−1

P2,t−1

− R) − Cfund + ηF̂ fund
t−1 ;

F̂ma
t = rF + yma

t−2 (
P1,t−1 + Dt−1

P2,t−1
− R) − Cma + ηF̂ma

t−1,

where

Dt = D + δt; δt ∼ N(0, σ2
δ);

P ∗ = D
rF ;

qma
t = 1 − qfund

t , qfund
t = mfund + (1 − mfund − mma) q̃fund

t ,

q̃fund
t =

exp(β F̂ fund
t )

exp(β F̂ fund
t ) + exp(β F̂ma

t )
;

yma
t = 2γ

xt−1

1 + x2
t−1

, xt−1 =
1

λ

P1,t−1 − M̂A1,t−1

M̂A1,t−1

;

yfund
t−2 =

1
Pt−2

(P ∗ + v(Pt−3 − P ∗) + D) − R

aσ2
=

1
P2,t−1

(P ∗ + v(P3,t−1 − P ∗) + D) − R

aσ2
;

yma
t−2 = 2γ

xt−3

1 + x2
t−3

, xt−3 =
1

λ

Pt−3 − M̂A1,t−3

M̂A1,t−3

=
1

λ

P3,t−1 − M̂A3,t−1

M̂A3,t−1

.

Here mfund and mma are the minimum probabilities with which the fundamental and

moving average forecasting rule are chosen; see Appendix B for details. The parameter

set is given by

Θ = { a > 0, σ2 > 0, R > 1, β > 0, 0 ≤ v ≤ 1, 0 < µ < 1, γ > 0,

λ > 0, 0 ≤ η ≤ 1, mfund ≥ 0, mma ≥ 0, 0 ≤ mfund + mma ≤ 1,

Cfund ≥ Cma ≥ 0 }.

The difference in probability with which the fundamental and moving average belief are

chosen is equal to

qfund
t − qma

t = (mfund − mma) + (1 − mfund − mma) tanh

(
β

2

(
F̂ fund

t − F̂ma
t

))
.

As can be seen in the above formula, the higher the difference in fitness in favour of the

fundamental belief, the higher the difference in probability in favour of the fundamental

belief. The fraction of agents who choose the fundamental believe is restricted to be

strictly positive qfund
t > 0, since otherwise there is no solution for the equilibrium price.

This condition will be automatically satisfied, even if mfund = 0, because of the discrete
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choice model probabilities which for finite β are always strictly positive2. Furthermore,

the following condition should hold for the fraction of total market wealth the moving

average traders invest in the risky asset

qma
t yma

t < qfund
t

R

aσ2
,

for otherwise there is also no solution for the equilibrium price.

Note that

lim
σ2↓0

P1,t = lim
a↓0

P1,t = lim
qma
t ↓0

P1,t = lim
yma

t ↓0
P1,t =

1

R
Efund

t (Pt+1 + Dt+1). (39)

Hence, if the conditional variance or the risk aversion of the fundamental belief goes to

zero, or if the fraction of wealth invested by the moving average belief goes to zero, then

the equilibrium price is equal to the discounted value of the expectation of tomorrow’s

price and dividend of the fundamental belief.

We define the vector variable

zt = (P1,t, P2,t, P3,t, M̂A1,t, M̂A2,t, M̂A1,t, F̂
fund
t , F̂ma

t )′.

In the following we denote the dynamical system by Φ, where

zt = Φ(zt−1).

Additive dynamic noise can be introduced into the system to obtain

zt = Φ(zt−1) + εt,

where εt = (εt, 0, 0, 0, 0, 0, 0, 0)′ are iid random variables representing the model approxi-

mation error in that our model can only be an approximation of the real world. Because

we assumed for all beliefs

V h
t (rP

t+1) = V h
t

(
Pt+1 + Dt+1 − Pt

Pt

)
= σ2

and because Pt+1 and Dt+1 are independent, this implies

V h
t (Pt+1) = P 2

t σ2 − V h
t (Dt+1) = P 2

t σ2 − σ2
δ.

Therefore, when we add dynamic noise to the deterministic skeleton, we draw εt iid from

a normal distribution with expectation 0 and variance

σ2
εt

= P 2
t σ2 − σ2

δ .

2However, if F̂ma
t − F̂ fund

t becomes large which causes qfund
t ↓ 0, this can cause numerical problems

in computing the market equilibrium price, because of floating point errors in the computer simulations.
These problems are avoided by placing a lower bound mfund > 0 on the probability with which the
fundamental belief is chosen.
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4 Trading volume

In this section we describe a procedure to determine trading volume. The total number

of short or long positions transferred from belief b to belief h at time t converges in

probability to zb
t−1q

h
t as the number of agents, each having zero market power, converges

to infinity. The total number of long and short positions transferred to belief h from the

other beliefs converges then in probability to

#longt(→ h)
p→
∑H

b=1 zb
t−1 qh

t I(zb
t−1 ≥ 0);

#shortt(→ h)
p→ |

∑H
b=1 zb

t−1 qh
t I(zb

t−1 < 0) |,
(40)

where I(.) is the indicator function. The demand for shares of each belief, under the

equilibrium price which is set by the auctioneer, is equal to

zh
t =

yh
t W h

t

Pt

p→ yh
t qh

t Wt

Pt

.

The turnover of shares in belief h we define to be equal to

if zh
t > 0 then V olht = |zh

t − #longt(→ h)| + |#shortt(→ h)|;

if zh
t < 0 then V olht = |zh

t + #shortt(→ h)| + |#longt(→ h)|;

if zh
t = 0 then V olht = |#longt(→ h)| + |#shortt(→ h)|.

(41)

The total turnover of shares is equal to

V olt =
H∑

h=1

V olht ,

doubly counted. For example, if belief h advises to hold a long position in the market at

time t, then first it is determined how many long positions are transferred to belief h from

the other beliefs at time t. The change in long positions is given by |zh
t − #longt(→ h)|.

This gives the (minimum) number of stock positions sold or bought to reach the new

long position from the old long position. Because a long position in the market is held,

the short positions transferred to belief h must be closed, which gives an extra volume

of |#shortt(→ h)|. Adding the two turnovers together yields the total trading volume in

belief h, in the case zh
t > 0. The other cases in (41) have a similar explanation.

5 Stability analysis

5.1 Steady state

For the system to be in the steady state it is required that the memory parameter is

restricted to 0 ≤ η < 1, thus we assume finite memory. A variable x at its steady state
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will be denoted by x̄. A steady state for the map Φ is a point z̄ for which Φ(z̄) = z̄. Hence

in the steady state MA = µP + (1− µ)MA, implying P = MA. Furthermore, P = MA,

implies yMA = 0 and hence F
ma

= rF−Cma

1−η
. Thus the steady state price of the risky asset

is equal to the steady state exponential moving average of the price. This relation implies

that the steady state demand of the moving average belief is equal to zero.

The steady state price must satisfy P = 1
R
(P ∗ + v(P − P ∗) + D), where P ∗ = D

rf is

the fundamental price. This implies that P = P ∗, yfund = 0 and F
fund

= rF−Cfund

1−η
. As

for the moving average belief, also the steady state demand of the fundamental belief is

equal to zero.

In the steady state the difference in probability with which both beliefs are chosen is

equal to

q̄fund − q̄ma = (mfund − mma) + (1 − mfund − mma) tanh

(
−β

2(1 − η)
(Cfund − Cma)

)
.

If mfund = mma = 0, then because Cfund ≥ Cma ≥ 0, we have that q̄fund ≤ q̄ma. Thus, if

no lower bound is imposed on the discrete choice probabilities, then at the steady state

the fundamental belief is chosen with smaller probability than the moving average belief if

the costs of the fundamental belief are higher than the costs of the moving average belief.

Because q̄fund + q̄ma = 1, the steady state probabilities are equal to

q̄fund =
1

2

(
1 + (mfund − mma) + (1 − mfund − mma) tanh

(
−β

2(1 − η)
(Cfund − Cma)

))
,

q̄ma = 1 − q̄fund.

5.2 Local stability of the steady state

The local behavior of the dynamical system zt = Φ(zt−1) around the steady state z̄ is

equivalent to the behavior of the linearized system

(zt − z̄) =
dΦ(zt−1)

dzt−1

∣∣∣∣
zt−1=z̄

(zt−1 − z̄) = J̄ (zt−1 − z̄),

if none of the eigenvalues of the Jacobian matrix J̄ lies on the unit circle. Hence we can

study the dynamical behavior of the system for different parameter values by calculating

the eigenvalues of J̄ . The steady state z̄ is locally stable if all eigenvalues lie within the

unit circle and becomes unstable if one of the eigenvalues crosses the unit circle. At this

point a bifurcation, a qualitative change in dynamical behavior, occurs.
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A straightforward computation shows that the Jacobian matrix of Φ at the steady

state z̄ is equal to

J̄ =




v

R
+

2aγσ2

λR

q̄ma

q̄fund
0 0

−2aγσ2

λR

q̄ma

q̄fund
0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

µ 0 0 1 − µ 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 η 0

0 0 0 0 0 0 0 η




.

The characteristic polynomial of J̄ evaluated at the steady state is equal to

p(ξ) = |J̄ − ξI| =

ξ4(η − ξ)2

(
ξ2 − (1 − µ +

v

R
+

2aγσ2

λR

q̄ma

q̄fund
)ξ + (1 − µ)

v

R
+

2aγσ2

λR

q̄ma

q̄fund

)
.

(42)

Thus the eigenvalues of J̄ are 0 (with algebraic multiplicity 4), η (with algebraic multi-

plicity 2) and the roots ξ1, ξ2 of the quadratic polynomial in the last bracket. Note that

these roots satisfy the relations

ξ1 + ξ2 = 1 − µ +
v

R
+

2aγσ2

λR

q̄ma

q̄fund
and ξ1ξ2 = (1 − µ)

v

R
+

2aγσ2

λR

q̄ma

q̄fund
, (43)

because

(ξ − ξ1)(ξ − ξ2) = ξ2 − (ξ1 + ξ2)ξ + ξ1ξ2. (44)

Also note that because memory cannot be infinite in the steady state (i.e. 0 ≤ η < 1),

the stability of the steady state is entirely determined by the absolute values of ξ1 and

ξ2. Furthermore, if there is no difference in costs between implementing the fundamental

or moving-average strategy, that is Cma −Cfund = 0, then q̄ma and q̄fund are independent

of the intensity of choice parameter β and hence the local stability of the steady state of

the heterogeneous agents model is independent of β.

We have seen in (39) that if the risk aversion, a, or if the expected dispersion of the

return of the fundamental belief, σ2, goes to zero, then the equilibrium price is entirely
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determined by the fundamental belief. Now, using (42), we find

lim
a↓0

p(ξ) = lim
σ2↓0

p(ξ) = ξ4(η − ξ)2(ξ − v

R
)(ξ − (1 − µ)), (45)

so that the eigenvalues are equal to 0, η, v
R

and (1−µ). Because R > v all eigenvalues lie

within the unit circle. Hence, in this limiting case, the fundamental steady state is locally

stable, because near the fundamental steady state fundamental traders exploit all profit

opportunities, driving the price back to the fundamental value.

5.3 Bifurcations

A bifurcation is a qualitative change in the dynamical behavior of the system when varying

the value of one of the parameters. Bifurcations occur for example, if one of the eigenvalues

of the linearized system in the steady state crosses the unit circle. We are now going to

investigate local bifurcations of the steady state.

Eigenvalue equal to 1

If one of the eigenvalues crosses the unit circle at 1, a saddle-node bifurcation may arise

in which a pair of steady states, one stable and one saddle, is created. Another possibility

is that a pitchfork bifurcation arises in which two additional steady states are created.

The only possibility for an eigenvalue to be equal to one is that one of the solutions, ξj,

of the quadratic polynomial in (44) is equal to 1, say ξ2 = 1. Then it follows from (43)

that

ξ1 + 1 = 1 − µ +
v

R
+

2aγσ2

λR

q̄ma

q̄fund
and ξ1 = (1 − µ)

v

R
+

2aγσ2

λR

q̄ma

q̄fund
.

Eliminating ξ1 from these equations leads to the condition

R = v.

However, since 0 ≤ v ≤ 1 < R, this condition can never be satisfied. Hence eigenvalues

equal to 1 can never occur.

Eigenvalue equal to -1

If one of the eigenvalues crosses the unit circle at −1, a period doubling or flip bifurcation

may arise in which a 2-cycle is created. Under the assumption that ξ2 = −1, equations

(43) lead to the relations

ξ1 − 1 = 1 − µ +
v

R
+

2aγσ2

λR

q̄ma

q̄fund
and − ξ1 = (1 − µ)

v

R
+

2aγσ2

λR

q̄ma

q̄fund
.
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Eliminating ξ1 leads to the condition

λ(µ − 2)(R + v) = 4aγσ2 q̄ma

q̄fund
.

Since all parameters in the model are strictly positive and because −2 < µ − 2 < −1,

the left hand side of this condition is strictly negative. However the right hand side of

the condition is strictly positive, so that this condition can never be satisfied. Hence

eigenvalues equal to −1 and therefore period doubling bifurcations of the steady state can

never occur.

Two complex conjugate eigenvalues of modulus 1

If a pair of complex conjugate eigenvalues crosses the unit circle in the complex plane, a

Hopf or Neimark-Sacker bifurcation may arise in which an invariant circle with periodic

or quasi-periodic dynamics is created. The roots ξ1, ξ2 of the characteristic equation are

complex conjugate of modulus 1 if ξ1ξ2 = 1 and |ξ1 + ξ2| < 2. Using (43) this leads to

the conditions

(1 − µ)
v

R
+

2aγσ2

λR

q̄ma

q̄fund
= 1 and |1 − µ +

v

R
+

2aγσ2

λR

q̄ma

q̄fund
| < 2. (46)

Substituting the first condition in the second yields

|2 − µ
(
1 − v

R

)
| < 2.

For 0 < µ < 1 and 0 ≤ v ≤ 1 < R this condition is always satisfied. Hence for parameters

satisfying the first condition a Hopf bifurcation should occur. However, when solving the

first condition for β, η, v or µ it turns out that not always a Hopf bifurcation occurs

when varying one of these four parameters while keeping the other parameters constant,

because for these parameters additional restrictions apply.

When solving the first condition for the risk aversion parameter a a Hopf bifurcation

occurs given the parameter set {Θ}\a if aH satisfies

aH =
(
1 − (1 − µ)

v

R

) λR

2γσ2

q̄fund

q̄ma
> 0.

When solving the first condition for the intensity of choice parameter β a Hopf bifur-

cation occurs given the parameter set {Θ}\β and Cfund > Cma if βH satisfies

βH =
1 − η

Cfund − Cma
ln(c),

where c is defined as

c =
b(1 − mma) − mma

(1 − mfund) − bmfund
,with b =

((
1 − (1 − µ)

v

R

) λR

2aγσ2

)
> 0.
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However, because β ≥ 0, there are possibly cases for which no Hopf bifurcation occurs,

when varying β and keeping the other parameters constant if the logarithm ln(c) is taken

over a value smaller than one.

When solving the first condition for the memory parameter η a Hopf bifurcation occurs

given the parameter set {Θ}\η if ηH satisfies

ηH = 1 − β(Cfund − Cma)

ln(c)
.

However, because 0 ≤ η < 1, there are cases for which no Hopf bifurcation occurs, when

varying η and keeping the other parameters constant.

When solving for the expected dispersion in return parameter σ2 a Hopf bifurcation

occurs given the parameter set {Θ}\σ2 if σ2
H satisfies

σ2
H =

(
1 − (1 − µ)

v

R

) λR

2aγ

q̄fund

q̄ma
> 0.

When solving for the gross risk-free interest rate parameter R a Hopf bifurcation occurs

given the parameter set {Θ}\R if RH satisfies

RH =
2aγσ2

λ
(
1 − (1 − µ) v

R

) q̄ma

q̄fund
.

Because R > 1, there are possibly cases for which no Hopf bifurcation occurs, when

varying R and keeping the other parameters constant.

When solving the first condition for the fundamental belief parameter v a Hopf bifur-

cation occurs given the parameter set {Θ}\v if vH satisfies

vH =
R

1 − µ

(
1 − 2aγσ2

λR

q̄ma

q̄fund

)
.

Again however, because 0 ≤ v ≤ 1, there are cases for which no Hopf bifurcation occurs,

when varying v and keeping the other parameters constant.

When solving the first condition for the exponential moving average parameter µ a

Hopf bifurcation occurs given the parameter set {Θ}\µ and v > 0 if µH satisfies

µH = 1 − R

v
+

2aγσ2

λv

q̄ma

q̄fund
,

and where v should additionally satisfy 0 < v ≤ 1. Now also, because 0 < µ < 1, there

are cases for which no Hopf bifurcation occurs, when varying µ and keeping the other

parameters constant.
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When solving for the moving average belief parameter γ a Hopf bifurcation occurs

given the parameter set {Θ}\γ if γH satisfies

γH =
(
1 − (1 − µ)

v

R

) λR

2aσ2

q̄fund

q̄ma
> 0.

When solving for the moving average belief parameter λ a Hopf bifurcation occurs

given the parameter set {Θ}\λ if λH satisfies

λH =
2aγσ2

R
(
1 − (1 − µ) v

R

) q̄ma

q̄fund
> 0.

Hence when one of the parameters a, σ2, γ or λ is varied while keeping the other

parameters constant, a Hopf bifurcation always arises for some parameter value.

If the Jacobian matrix of Φ at the steady state z̄ has two complex conjugate eigenval-

ues, ξ1 = c + di and ξ2 = c − di, then the price series, and therefore also the exponential

moving average series, follows a wavelike pattern. For fluctuation close to the steady state

the period of the wave is approximately equal to

2π

θ
, where tan(θ) =

d

c
, with c > 0,

if the two complex conjugate eigenvalues are near the unit circle. Solving p(ξ) = 0 under

the conditions in (46) yields

d

c
=

√
4 − (1 − µ + v

R
+ K)2

(1 − µ + v
R

+ K)2
, with K =

2aγσ2

λR

q̄ma

q̄fund
.

For 0 < µ < 1 this is an increasing function of µ and hence θ is an increasing function of

µ. Thus the period of the wave of the price fluctuation close to the unstable steady state

is a decreasing function of µ. Recall that in the computation of the exponential moving

average, the larger µ, the more weight is placed on current prices, the more closely the

moving average follows the price series, and the more earlier a change in direction of the

price series is detected. Thus, a larger µ causes price to return to the fundamental value

with a higher frequency than a smaller µ.

6 Numerical analysis

In the last section we studied the local stability of the steady state analytically. We

determined what kind of bifurcations can occur if the value of one of the model parameters

is varied. In this section we study the global dynamical behavior numerically, especially

when the steady state is unstable, with the aid of time series plots, phase diagrams, delay

plots, bifurcation diagrams and the computation of Lyapunov exponents.
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6.1 Lyapunov characteristic exponents

The Lyapunov characteristic exponents (LCEs) measure the average rate of divergence

(or convergence) of nearby initial states, along an attractor in several directions. Consider

the dynamical model zt+1 = Φ(zt), where Φ is a k-dimensional map. After n periods the

distance between two nearby initial state vectors z0 and z0 + v0 has grown approximately

to

‖Φn(z0 + v0) − Φn(z0)‖ ≈ ‖DΦn(z0)v0‖,

where v0 is the initial perturbation vector, DΦn(z0) is the Jacobian matrix of the n-th

iterate of Φ evaluated at z0 and ‖.‖ denotes the Euclidean distance. The exponent λ(z0, v0)

measuring the exponential rate of divergence has to satisfy

‖Φn(z0 + v0) − Φn(z0)‖ ≈ ‖DΦn(z0)v0‖ = enλ(z0,v0)‖v0‖.

For a k dimensional system there exist k distinct LCEs, ordered as λ1 ≥ λ2 ≥ ... ≥ λk, each

measuring the average expansion or contraction along an orbit in the different directions.

The largest LCE can be defined as

λ(z0, v0) = lim
n→∞

1

n
ln(‖DΦn(z0)v0‖). (47)

To calculate the largest LCE we thus have to determine ‖DΦn(z0)v0‖. We set the

initial perturbation vector v0 with ‖v0‖ = ε, where ε is some small number. We define

Φ(zi + vi) − Φ(zi) ≈ DΦ(zi)vi = v′
i+1 = fi+1vi+1, (48)

where vi is a perturbation vector on the i-th iterate of Φ (i.e. zi = Φi(z0)) and fi+1 is a

scalar. We define

vi+1 =
v′

i+1

‖v′
i+1‖

ε, so that ‖vi+1‖ = ‖vi‖ = ... = ‖v0‖ = ε. (49)

Using the chain rule for DΦn(z0) we get

DΦn(z0) v0 = DΦ(zn−1)...DΦ(z1) DΦ(z0) v0.

Using (48) recursively this relation transforms to

DΦn(z0) v0 = fn...f2 f1vn.

Because

lim
n→∞

1

n
ln(‖vn‖) = 0,
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the LCE in equation (47) can be written as

λ(z0, v0) = lim
n→∞

1

n

n∑

i=1

ln(fi). (50)

Hence we can confine ourselves to the calculation of

fi =
‖v′

i‖
‖vi‖

=
‖v′

i‖
ε

, for i = 1...n (51)

to determine the largest LCE.

Numerically we compute the largest LCE as follows. Given an initial perturbation

vector v0, the approximation in (48) is used to determine v′
i+1 for i ≥ 0, that is

Φ(zi +vi)−Φ(zi) ≈ v′
i+1. Next we compute the perturbation vector for the i+1-th iterate

by using (49). The factor fi+1 is computed by using (51). Finally, for large n, the largest

LCE is computed by using (50).

Attractors may be characterized by their Lyapunov spectrum. For a stable steady

state or a stable cycle all LCEs are negative. For a quasi-periodic attractor the largest

LCE is equal to zero, while all other LCEs are negative. An attractor is called a strange

or a chaotic attractor if the corresponding largest LCE is positive, implying sensitive

dependence on initial conditions.

6.2 Parameter values

In our numerical analysis of the heterogeneous agents model with evolutionary learning

we want to choose values for the model parameters which are economically sensible. We

assume that there are 250 trading days in one year. The trading interval in our model is 1

day. If we are talking about daily frequencies, then the order of magnitude of percentage

price changes is in basis points (1/100 of 1%).

We set the risk-free interest rate to 5% at a yearly basis with daily compounding. Thus

rf = 0.05/250 = 0.0002, that is 2 basis points daily. The daily standard deviation of the

Dow-Jones Industrial Average during the twentieth century is equal to 1.0830%, which

translates to a yearly standard deviation of, if we assume that returns are independently

distributed, 1.0830 ∗
√

250 ≈ 17%. We take this number as the standard deviation of the

returns, that is σ = 0.010830. Dividends are assumed to be iid and the mean dividend is

set to 50 yearly, paid daily. Hence the fundamental value of the risky asset under the iid

assumption is equal to 50/0.05 = 1000. The standard deviation of the dividend process

is set equal to 10 yearly.

We choose the exponential moving average parameter µ to be equal to 0.18. The

maximum fraction of individual wealth a moving average trader can go long or can go
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short in the risky asset we choose to be equal to γ = 1.25 and occurs when the price

deviates from the moving average with 7 basis points (λ = 0.0007).

The fundamental value expectations parameter v we choose to be equal to 0.99. Be-

cause

Efund
t (Pt+1) = P ∗ + v(Pt−1 − P ∗),

the expected two-day return of the stock price, not corrected for dividends, is equal to

Efund
t (Pt+1) − Pt−1

Pt−1

= (1 − v)
P ∗ − Pt−1

Pt−1

.

Thus, if the price should decline by 2% to return to the fundamental value P ∗, then for

v = 0.99 the fundamental trader expects that the two-day price return is equal to 2 basis

points, which corresponds with a one-day price return of 1 basis point.

A broad range of studies, taking into account the full range of available assets, places

the degree of risk aversion a for the representative investor in the range of 2 to 4, see for

example Friend and Blume (1975), Grossman and Shiller (1981). We set a initially to 4.

Costs for implementing the strategy with fundamental beliefs are higher than the

costs for implementing the exponential moving-average strategy. We set the costs of

determining the fundamentals to 1 basis point daily (Cfund = 0.0001), which is 2.5%

yearly. The costs of the moving-average strategy we set to zero.

The discrete choice model determines on the basis of the fitnesses of the beliefs with

which probabilities the moving average and fundamental beliefs are chosen by the agents.

The memory parameter, η, we choose to be equal to 0.25. We choose the intensity of

choice parameter, β, to be equal to 250. The minimum probabilities with which the

fundamental belief, mfund, and the moving average belief, mma are chosen, we set equal

to 0.01.

6.3 Model simulations

Bifurcations

We have seen in equation (45) that in the case of risk neutrality of the fundamental

traders, i.e. a = 0, there is locally always convergence to the fundamental steady state.

If a = 4, then for β = 0 the dynamical system exhibits quasi periodic behavior and

no change in the dynamics occurs by increasing β. Only for a < 0.456 changes in the

dynamical behavior can be observed by varying β. Therefore we set the risk aversion

parameter a initially low (0.42), so that the local dynamics around the steady state is

dependent on the intensity of choice parameter β.
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For a = 0.42 figure 3a shows the bifurcation diagram with respect to β. A Hopf

bifurcation occurs at βH = 635. Figure 3b shows the corresponding largest LCE plot.

Before the Hopf bifurcation occurs the largest LCE is clearly smaller than zero, indicating

convergence to the steady state. After the Hopf bifurcation occurred, the largest LCE

is close to zero, indicating quasi periodic dynamical behavior. Thus for costs and low

risk aversion for the fundamental traders and low intensity of choice for all traders, the

price locally converges to the fundamental value. However for high intensity of choice,

traders quickly change to the most profitable strategy and the moving-average trading

strategy can survive in the market even for low risk aversion of the fundamental traders.

Price fluctuations are then driven by the evolutionary dynamics between the two different

beliefs.

If the costs for the fundamental traders decrease to zero, then locally when varying β

there is always convergence to the fundamental steady state, for low risk aversion. Funda-

mental expectations then dominate the moving-average strategy. Hence, costs can cause

the fundamental steady state to become unstable, even if the risk aversion of fundamental

traders is low. In the case of no costs and β = 250, figure 4a shows the bifurcation diagram

with respect to the parameter a, when a is varied between 0.1 and 5. Figure 4b shows

the corresponding largest LCE plot. At aH = 0.456 a Hopf bifurcation occurs and the

dynamics shows quasi periodic behavior after the Hopf bifurcation. Hence, if fundamental

traders become more risk averse, then even in the no cost case, moving average traders

can survive in the market and affect the price by their actions.

We set a equal to 4 and study the local dynamical behavior when varying the exponen-

tial moving average parameter µ. To observe a change in the dynamical behavior for the

parameter µ we double the parameter λ to 14 basis points and we decrease the intensity

of choice parameter β to 125. Figure 5a shows the bifurcation diagram with respect to

µ, if µ is varied between 0.04 and 0.98. Figure 5b shows the corresponding largest LCE

plot. Remember that by increasing the parameter µ the moving average follows the price

series more closely and generates earlier a trading signal when the directional trend in

prices changes direction. From the bifurcation diagram and the LCE plot it can be seen

that the fundamental steady state becomes locally stable if the technical traders use a

very fast moving average (µ > 0.82), that is if the technical traders quickly change their

trading position if the directional trend in prices changes direction. For lower values of

µ the LCE plot is close to zero and thus the dynamical system exhibits quasi periodic

behavior.



6 Numerical analysis 35

Price simulations

Figures 6a, b, c and d show, given the parameter values in section 6.2, the time series

plots of the price, return, fraction of fundamental traders and trading volume. The price

series plot shows that there is a slow movement away from the fundamental value and a

quick movement back. In figure 6a price starts below the fundamental value of 1000 and

slowly increases with a declining positive return, or stated differently, the price sequence

is concave. As price is increasing further and further above the fundamental value of

1000, the fundamental traders go short a larger fraction of their wealth, causing volume

to increase as can be seen in figure 6d. The fraction of fundamental traders starts below

0.50 and is slowly increasing until the point that stock returns become smaller than

the risk-free interest rate. Then the moving average forecasting rule is not profitable

anymore and the fraction of fundamental traders increases sharply until approximately

0.56. These fundamental traders cause the price to turn back in the direction of the

fundamental value. This change in trend is picked up by the moving average traders and

they reinforce the downtrend by holding also short positions in the risky asset. Because as

well the fundamental traders as the moving average traders are expecting price to decline,

price falls quickly back to the fundamental value in a convex way. However, because

the moving average traders are doing better than the fundamental traders, the fraction

of fundamental traders declines sharply. Thus, the fundamentalists change the direction

of the trend, but the chartists push prices back to the fundamental value. Because a

majority of the agents was following the fundamental forecasting rule and already had

short positions before the turn in price direction, volume drops sharply after the change

of direction in the price trend. As price returns to the fundamental value, agents following

the fundamental belief are closing their short positions, while traders following the moving

average belief are holding more and more short positions, causing volume to increase.

After prices dropped back to the fundamental value, prices keep on declining due to the

moving average traders, with negative but increasing returns, so that the price sequence

is convex. Volume increases, because traders following the fundamental belief are now

holding more and more long positions as price moves below the fundamental value. Then,

if the short position held by the moving average traders is not profitable anymore, the

fraction of fundamental traders increases sharply turning the downward trend in price to

an upward trend in price. The moving average traders detect the change in trend and

will change their short position to a long position in the risky asset, causing price to

increase back to the fundamental value. Because a majority of the agents was following

the fundamental forecasting rule and already had long positions, volume drops sharply

after the change of direction in the price trend. The price cycle is thus characterized
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by a period of small price changes when moving average traders dominate the market

and periods of rapid decrease or increase of prices when fundamental traders temporarily

dominate the market. Furthermore, volume goes by the prevailing trend as can be seen in

figure 6d. That is, if the primary trend is upwards, then volume increases. Volume drops

during a change in directional trend. Then, if the primary trend is downwards, volume

also increases. This is a very important concept in technical analysis and the relation has

been shown in many price charts.

Adding dynamic noise to the deterministic skeleton leads to irregular price behavior

as can be seen in figure 7a. Clearly periods with trending behavior can be identified.

Figure 7c shows that the fraction of fundamental traders is switching irregular between

its lower- and upperbound. Because little autocorrelation, volatility clustering and fat

tails are important characteristics of real financial time series, we check our return series

for these features. Figures 8b and 8c show the autocorrelation function plots of the

returns and the squared returns up to order 36. Figure 8b shows that the return series

does not exhibit any serial autocorrelation, which means that price changes are linearly

independent. Further, according to figure 8c the squared return series does not exhibit

any serial autocorrelation, which means that there is no volatility clustering present in

the data. The return distribution does show excess kurtosis relatively to the normal

distribution (see figure 8a). Thus our theoretical heterogeneous agents model only fails

in mimicking the feature of volatility clustering.

7 Conclusion

In this paper we have built a financial market model with heterogeneous adaptively learn-

ing agents, fundamentalists and technical traders. The model is an extension of the Brock

and Hommes (1998) model in that it extends the set of trading techniques the agents can

independently choose from with a realistic moving-average technical trading rule. Mov-

ing averages are well known and one of the mostly used technical indicators in financial

practice and therefore they deserve to be implemented in heterogeneous agents modeling.

Furthermore, the model is derived under the assumption of relative risk aversion, instead

of absolute risk aversion as in the Brock and Hommes (1998) case.

The model is derived under the assumption of infinitely many agents, who only differ

in the forecasting rule they select each period. Under the assumption that each agent has

zero market power at each date, that is his individual investment decision will not influence

the equilibrium price, it is shown that the fraction of total market wealth invested by all

agents according to a certain belief converges in probability to the probability that the
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belief is chosen by the agents. Under the assumption of zero supply of outside stocks

and the use of certain beliefs types it turns out that the price equilibrium formula is

exactly the same as in Brock and Hommes (1998), namely that the price is equal to the

discounted value of the average expected price and dividends by all agents. Moreover if

the moving-average technical trading rule is added to the model, then also risk aversion

and expected dispersion of future returns play a role in our model.

In the end, our financial market model is an eight dimensional nonlinear dynamical

system. The steady state price is equal to the fundamental value, which is the discounted

value of all future dividends. Analytically we derive the eigenvalues of the linearized

system and we examine for which parameter values bifurcations occur. It is shown that the

system only can exhibit a Hopf bifurcation. We use numerical tools such as delay, phase

and bifurcation diagrams, and computation of Lyapunov characteristic exponents to study

the local stability around the fundamental steady state. If there is no difference in costs of

applying the fundamental or moving-average strategy, then it is found that the intensity

of choice parameter, measuring how quickly traders switch beliefs, has no influence on

the dynamical behavior. In the presence of costs, if the risk aversion parameter of the

fundamental traders is low enough, then these traders always drive prices back to the

fundamental steady state for the case the intensity of choice parameter is sufficiently low.

For high values of the intensity of choice parameter, even for low risk aversion, quasi

periodic price behavior can occur as a consequence of a Hopf bifurcation. If costs of all

trader types are set to zero and if more realistic values for the risk aversion parameter are

chosen, then fundamental traders are too risk averse to drive prices to the fundamental

steady state and the price exhibits quasi periodic behavior. However, if the risk aversion

parameter is high and the technical traders use a very fast moving average, which follows

the price closely, then the price does converge to the fundamental value.

We study a case in which we choose parameter values that are economically sensible.

The solution of the dynamical system is quasi periodic price behavior. Interaction be-

tween fundamentalists and technical analysts may thus destabilize the market and lead

to persistent price fluctuations around an unstable fundamental steady state. It turns

out that fundamental traders change the direction of a prevailing price trend, but that

once the direction has changed, the technical traders push prices back to the fundamental

value. Moreover it is found that volume goes by the prevailing trend, that is if the pri-

mary trend is upwards or downwards, then volume increases, only dropping if a change

in the direction of the trend occurs. This is an important concept in technical analysis.

Dynamic noise to the deterministic skeleton is added and leads to irregular price behavior.

The features of the return distribution of the dynamical system are examined, but it is
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concluded that although the model generates returns series which show zero autocorrela-

tion and fat tails, the model fails in mimicking the important characteristic of volatility

clustering.
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Appendix

A. Figures

(b)

(a)

Figure 3: (a) Bifurcation diagram for the intensity of choice parameter β with a Hopf

bifurcation leading to quasi-periodic dynamics; (b) largest LCE plot.
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(b)

(a)

Figure 4: (a) Bifurcation diagram for the risk aversion parameter a with a Hopf bifurcation

leading to quasi-periodic dynamics; (b) largest LCE plot.
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(b)

(a)

Figure 5: (a) Bifurcation diagram for the exponential moving average parameter µ with

a Hopf bifurcation leading to quasi-periodic dynamics; (b) largest LCE plot.
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(a)

(b)

(c)

(d)

Figure 6: rf = 0.05/250, D = 50/250, a = 4, µ = 0.18, γ = 1.25, λ = 0.0007, v = 0.99,

η = 0.25, β = 250, mfund = mma = 0.01, Cfund = 0.0001, Cma = 0. (a) Price plot.

Dotted line is the fundamental value; (b) Return plot. Dotted line is the risk-free interest

rate; (c) Fraction of fundamental traders; (d) Trading volume.
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(a)

(b)

(c)

(d)

Figure 7: Adding dynamic noise to the deterministic skeleton of the nonlinear financial

market model with fundamentalists versus moving average traders: σ2 = 0.17/
√

250,

σ2
δ = 10/

√
250. (a) Price plot; (b) Return plot. Dotted line is the risk-free interest rate;

(c) Fraction of fundamental traders; (d) Trading volume.
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(a)

(b)

(c)

Figure 8: (a) Histogram and summary statistics; (b) Autocorrelation function of the

returns; (c) Autocorrelation function of the squared returns.
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B. Wealth invested according to belief h

Choice probability

The probability that agent j chooses belief h is determined by the discrete choice model

in (15). The return of belief h in period t is equal to: rF + yh
t−1(r

P
t − rF ). Therefore the

fitness measure is defined as

F h
j,t = rF + yh

t−1(r
P
t − rF ) − Ch

j + ηjF
h
j,t−1; (52)

As in the BH model it is assumed that for all agents βj = β, ηj = η and Ch
j = Ch.

However, we adjust the probabilities with which each belief is chosen by introducing a

lower bound mh on the probabilities as motivated by Westerhoff (2002):

q̃h
t =

exp(βF h
t−1)∑H

k=1 exp(βF k
t−1)

;

qh
t = mh + (1 −

∑H
h=1 mh) q̃h

t ,

where mh ≥ 0 ∀h and 0 ≤
∑H

h=1 mh ≤ 1. For example, Taylor and Allen (1990, 1992)

found in questionnaire surveys that a small group of traders always uses technical or

fundamental analysis and do not switch beliefs3. We define Xh
j,t = 1 if agent j chooses

belief h at time t and Xh
j,t = 0 if agent j chooses a belief other than belief h. Because

Xh
1,t, ..., X

h
N,t are iid with E(Xh

j,t) = qh
t and limited variance V (Xh

j,t) = qh
t (1 − qh

t ), the

fraction of agents who choose belief h converges in probability to qh
t :

1

N

N∑

j=1

Xh
j,t

p→ qh
t ,

as the number of agents goes to infinity. Furthermore we did assume that all agents have

the same risk aversion parameter aj = a, so that agents who follow the same belief have

the same demand. Hence in the end we assume that agents are only heterogeneous in the

beliefs they can choose from.

Wealth assigned to belief h by agent j

The wealth invested according to belief h by agent j at time t is equal to W h
j,t = Xh

j,tWj,t.

From this it follows that the total wealth assigned to belief h by all agents is equal to

3Moreover, especially in our final two type trader model, by placing a lower bound on the probabilities,
we can avoid numerical problems in computing the market equilibrium price, because of floating point
errors in the computer simulations.
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W h
t =

∑N
j=1 W h

j,t. Finally, total market wealth is equal to Wt =
∑H

h=1 W h
t . The expected

wealth transferred from agent j to belief h conditioned on the wealth of agent j and the

information set It = {Pt−i, Dt−i; i ≥ 0} is equal to:

E(W h
j,t|It,Wj,t) = Wj,tE(Xh

j,t|It) = Wj,t(q
h
t 1 + (1 − qh

t ) 0) = qh
t Wj,t.

The expectation of wealth transferred from agent j to belief h conditioned only on It is

equal to:

E(W h
j,t|It) = E(E(W h

j,t|It,Wj,t)|It) = qh
t E(Wj,t|It).

According to (28) the wealth of agent j at time t depends on the fraction of the wealth

invested at time t− 1 and this chosen fraction depends on the agent’s belief at time t− 1.

Hence the expected wealth of agent j at time t conditioned on his wealth at time t− 1 is

equal to:

E(Wj,t|It,Wj,t−1) =
H∑

h=1

((
RWj,t−1 + (Pt + Dt − RPt−1)

yh
t−1Wj,t−1

Pt−1

)
qh
t−1

)
=

RWj,t−1 + (Pt + Dt − RPt−1)
E(yt−1)Wj,t−1

Pt−1

,

where E(yt−1) =
∑H

h=1 yh
t−1q

h
t−1. The expected wealth of agent j at time t only conditioned

on It is equal to:

E(Wj,t|It) = EWj,t−1
(E(Wj,t|It,Wj,t−1)|It) =

∑

{Wj,t−1}

E(Wj,t|It,Wj,t−1)P (Wj,t−1) =

R E(Wj,t−1|It−1) + (Pt + Dt − RPt−1)
E(yt−1)E(Wj,t−1|It−1)

Pt−1
. (53)

In the end:

E(Wj,t|It) =

(
R +

(Pt + Dt − RPt−1)

Pt−1

E(yt−1)

)
E(Wj,t−1|It−1) =

(1 + rF + (rP
t − rF )E(yt−1))E(Wj,t−1|It−1),

which is a recursive formula for the expected wealth of agent j at time t given the dividends

paid and given the equilibrium prices {Pt−i : i ≥ 0} the auctioneer did set. Given the

wealth of agent j at time 0, the expected wealth of agent j at time t is equal to:

E(Wj,t|It) = Wj,0

t−1∏

i=0

(
1 + rF + (rP

t−i − rF )E(yt−1−i)
)
.
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Assume that at time 0, all agents have equal initial wealth. Thus for all j we have

Wj,0 = ω0 and

E(Wj,t|It) = ω0

t−1∏

i=0

(
1 + rF + (rP

t−i − rF )E(yt−1−i)
)
. (54)

According to (54) the expectation is equal for all agents at time t, E(Wj,t|It) = ωt, under

the assumption that all agents have the same wealth at time 0. Finally we now have

found that E(W h
j,t|It) = qh

t ωt ∀j. The variance of W h
j,t conditioned on It is equal to:

V (W h
j,t|It) = E((W h

j,t)
2|It) − E2(W h

j,t|It)

= qh
t E(W 2

j,t|It) − (qh
t )2E2(Wj,t|It)

= qh
t V (Wj,t|It) + qh

t (1 − qh
t )E2(Wj,t|It).

(55)

The expectation of the squared value of the wealth of agent j at time t conditioned on It

and his wealth at t − 1 is equal to:

E(W 2
j,t|It,Wj,t−1) = R2W 2

j,t−1 + 2RW 2
j,t−1(r

P
t − rF )E(yt−1) + W 2

j,t−1(r
P
t − rF )2E(y2

t−1),

and the expectation only conditioned on It is equal to:

E(W 2
j,t|It) = [R2 + 2R(rP

t − rF )E(yt−1) + (rP
t − rF )2E(y2

t−1)]E(W 2
j,t−1|It−1),

which iterates to:

E(W 2
j,t|It) = W 2

j,0

t−1∏

i=0

[R2 + 2R(rP
t−i − rF )E(yt−1−i) + (rP

t−i − rF )2E(y2
t−1−i)], (56)

where Wj,0 is the initial wealth of investor j. The square of the expectation of the wealth

of agent j at time t is equal to:

E2(Wj,t|It) = [R2 + 2R(rP
t − rF )E(yt−1) + (rP

t − rF )2E2(yt−1)]E
2(Wj,t−1|It−1),

which iterates to:

E2(Wj,t|It) = W 2
j,0

t−1∏

i=0

[R2 + 2R(rP
t−i − rF )E(yt−1−i) + (rP

t−i − rF )2E2(yt−1−i)]. (57)

Substituting (56) and (57) in (55) gives the variance of the wealth of agent j assigned to

belief h at time t conditioned on It. If Wj,0 = ω0 for all agents, then the variance is equal
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for all agents, V (W h
j,t|It) = σ2

h,t for all j. As a simple example we can take the return of

the risky asset to be equal to the risk free rate for t = 1, ..., T . Then

E(W h
j,T |IT ) = qh

TRT ω0,

V (W h
j,T |IT ) = qh

T (1 − qh
T )(RTω0)

2.

Hence in this simple example expected wealth and variance of wealth transferred by agent

j to belief h both increase in time.

Fraction of total market wealth assigned to belief h by all agents

We define

W̃ h
j,t =

W h
j,t

Wt

as the individual wealth assigned by agent j to belief h as a fraction of total market wealth

Wt. The choices agents make at time t are dependent on the performances of the different

beliefs until and including time t − 1, hence the choices are independent of the price and

wealth at time t. However, the price set at time t, which influences the wealth of each

agent at time t and thus total wealth, is dependent on the choice of each agent at time t.

Thus W̃ h
1,t, ... , W̃ h

N,t given It are dependent. However, if an agent is very small relative

to the market, his choice will have a negligible effect on the eventual price set at time t.

Hence if we assume that the market power of each agent is zero, that is

∀t ∧ ∀j : lim
N→∞

Wj,t

Wt

→ 0, (58)

then the law of large numbers still holds. Thus W̃ h
1,t, ... , W̃ h

N,t given It are dependent

but identically distributed with mean E(W̃ h
j,t|It) = qh

t
ωt

Wt
and finite (under assumption 58)

variance V (W̃ h
j,t|It), so that

1

N

N∑

j=1

(W̃ h
j,t) =

1

N

W h
t

Wt

p→ qh
t

ωt

Wt

. (59)

This means that the average wealth per agent which is assigned to belief h as a fraction

of total market wealth converges in probability to qh
t

ωt

Wt
as the number of agents goes to

infinity. Average wealth per agent as a fraction of total wealth converges to:

Wt

Wt

=
H∑

h=1

1

N

W h
t

Wt

p→
H∑

h=1

qh
t

ωt

Wt

=
ωt

Wt

. (60)
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If we divide (59) by (60) we find that the fraction of total wealth invested according to

belief h at time t converges to:
W h

t

Wt

p→ qh
t .

C. Equilibrium price for s > 0

If s > 0, then the derivation of the equilibrium price becomes more complex. By substi-

tuting (24) and (29) in (35) we can rewrite (35) as the solution to a quadratic equation

of Pt. The formulas for the equilibrium price Pt are:

c1 =
1

R

∑

h∈B1

qh
t

c3
Eh

t (Pt+1 + Dt+1);

c2 = R(Wt−1 − sPt−1) + sDt;

c3 =
∑

h∈B1
qh
t ;

c4 =
∑

h∈B2
qh
t yh

t ;

Discr = (c1c3Rs + c2c3R − ac2c4σ
2)2 + 4ac1c2c3Rsσ2;

Pt =
(c1c3Rs − c2c3R + ac2c4σ

2) +
√

Discr

2s(c3R + a(1 − c4)σ2)
.

(61)

Here c1 is the net present value of the average of the expected future price plus dividend

by all agents in belief group B1, c2 is the total amount of money invested in the risk free

asset by all agents, c3 is the total fraction of market wealth assigned to beliefs in group

B1 and c4 is the fraction of market wealth invested in the risky asset by agents in belief

group B2 at time t. For the equilibrium equation to be solvable for Pt it is necessary that

there is a belief h ∈ B1 for which qh
t > 0. If for all beliefs h ∈ B1 : qh

t = 0, then there

is no solution for Pt. Further, an upperbound should be imposed on the fraction of total

market wealth traders in group B2 can go long in the market. If s > 0, then the fraction

of total market wealth invested in the risky asset lies between 0 and 1, that is

0 ≤
∑

h∈B1

qh
t yh

t +
∑

h∈B2

qh
t yh

t < 1,

or equivalently

−
∑

h∈B1

qh
t yh

t ≤
∑

h∈B2

qh
t yh

t < 1 −
∑

h∈B1

qh
t yh

t .
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Because of the characteristics of the demand function (24) for the risky asset, traders in

belief group B1 are restricted in the fraction of individual wealth they can go short, that

is

− R

aσ2
< yh

t < ∞

This implies that there is an upperbound on the fraction of total wealth traders in belief

group B2 can go long, that is

∑

h∈B2

qh
t yh

t < 1 +
R

aσ2

∑

h∈B1

qh
t , or equivalently c4 < 1 + c3

R

aσ2

Thus the denominator in (61) is positive. Now the question is whether the nominator of

(61) is also positive, so that there is a unique positive equilibrium price. It is clear that

c1 ≥ 0. If the initial wealth invested in the risk free asset is positive, then according to

(30) the total wealth at time t should be at least be equal to the value of the total number

of shares: Wt = c2 + sPt ≥ sPt, implying c2 ≥ 0. Because for all beliefs h: qh
t ≥ 0 it is

also true that c3 ≥ 0. c4 ∈ IR and can be of either sign. Hence under these relationships

the nominator of (61) is positive, because:

(c1c3Rs − c2c3R + ac2c4σ
2) +

√
Discr >

(c1c3Rs − c2c3R + ac2c4σ
2) +

√
(c1c3Rs + c2c3R − ac2c4σ2)2 = 2c1c3Rs > 0.

We have shown that the nominator and denominator of (61) are both positive, so that we

have proven that for s > 0 the model yields a unique positive equilibrium price.
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